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A Sim-to-Real Deep Learning-Based Framework
for Autonomous Nano-Drone Racing

Lorenzo Lamberti ““, Elia Cereda
Victor Javier Kartsch Morinigo
Francesco Conti

Abstract—Autonomous drone racing competitions are a proxy
to improve unmanned aerial vehicles’ perception, planning, and
control skills. The recent emergence of autonomous nano-sized
drone racing imposes new challenges, as their ~10 cm form factor
heavily restricts the resources available onboard, including mem-
ory, computation, and sensors. This letter describes the method-
ology and technical implementation of the system winning the
first autonomous nano-drone racing international competition: the
“IMAV 2022 Nanocopter AI Challenge.” We developed a fully
onboard deep learning approach for visual navigation trained only
on simulation images to achieve this goal. Our approach includes a
convolutional neural network for obstacle avoidance, a sim-to-real
dataset collection procedure, and a navigation policy that we se-
lected, characterized, and adapted through simulation and actual
in-field experiments. Our system ranked 1st among six competing
teams at the competition. In our best attempt, we scored 115 m
of traveled distance in the allotted 5-minute flight, never crashing
while dodging static and dynamic obstacles. Sharing our knowledge
with the research community, we aim to provide a solid groundwork
to foster future development in this field.

Index Terms—Aerial systems: Perception and autonomy,
embedded systems for robotic and automation, micro/nano robots.

1. INTRODUCTION

OMPETITIONS have always been a catalyst for scien-
tific and technological progress. As the space race was
a driver to develop programmable computers and microchips,
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Fig. 1. Our nano-drone winning the IMAV’22 “Nanocopter Al Challenge.”

likewise, in recent years, autonomous drone racing pushed the
development of cutting-edge navigation algorithms, including
artificial intelligence (AI), running aboard unmanned aerial
vehicles (UAVs) [1], [2], [3]. Competitions act as a proxy to
improve UAVs’ perception, planning, and control skills: from
2016 to date, the racetrack’s average flight speed of autonomous
drones increased from 0.6 to 22 m/s [4]. Eventually, these ad-
vancements positively impact a more comprehensive range of
applications where robust, agile, and precise autonomous navi-
gation is crucial, such as rescue missions [5] and human-robot
interaction [6].

So far, these competitions have focused on micro-sized
drones, i.e., ~30cm-wide robots capable of hosting power-
ful processors and rich sensors, autonomous nano-sized drone
racing constitutes a newborn category employing palm-sized
UAVs. The first competition of this kind was the “Nanocopter
Al Challenge” hosted at the 13th International Micro Air Vehicle
conference (IMAV’22). This last-born class of robotic competi-
tions poses a new challenge to roboticists due to the small size of
nano-drones, i.e., 10 cm in diameter and a few tens of grams in
weight. While nano-drone racing targets tasks similar to major
competitions for bigger drones (e.g., AlphaPilot, IROS Drone
Racing, etc.), their ultra-tiny form factor allows only minimal
onboard resources, i.e., memory, computation, and sensors.

In the IMAV’22 competition, all challengers run their naviga-
tion algorithms on the same platform: a commercial off-the-shelf
(COTS) Crazyflie 2.1 nano-drone equipped with the Al-deck
board featuring a GWT GAPS System-on-Chip (SoC) [10] and a
grayscale, low-resolution camera [11]. Compared to the typical
processors found on micro-sized racing drones [1], [2], e.g.,
Nvidia Jetson Xavier, the GAP8 SoC has more than 1000 x
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TABLE I
LITERATURE REVIEW FOR OBSTACLE AVOIDANCE (OA) AND GATE-BASED NAVIGATION (GN) ON UAVS

Work Size Onboard Task Perception Algorithm  Data Compute device Power Competition
Wagter et al.[1] Micro v GN Camera CNN Real Jetson AGX Xavier 30W AlphaPilot’21
Foehn et al.[2] Micro v GN Stereo camera CNN Real Jetson AGX Xavier 30W AlphaPilot’21

Kaufmann et al. [7] Micro v GN Camera CNN Sim Intel UpBoard 13W IROS’18
Jung etal.[3] Micro v GN/OA Stereo camera CV None Jetson TK1s 15W IROS’16
Pham et al. [8] Micro v GN Camera CNN Sim Jetson TX2 15W —

Niculescu et al.[9] Nano v OA Camera CNN Real GWT GAPS8 100 mW —

Ours Nano v OA Camera CNN Sim GWT GAPS8 100 mW IMAV’22

less compute power and memory. Despite this, the competition
encouraged onboard computation by granting a 5x score multi-
plier while challenging the nano-drone with agile maneuvers to
i) avoiding static and dynamic obstacles and ii) passing through
a set of gates in a never-seen-before indoor arena. In fact,
before the competition, no arena map or real-world dataset
was released; participants could only access a photorealistic
simulator.

This letter’s main contribution is a thorough analysis
and description of the strategy, methodology, and technical
implementation we employed to win the IMAV’22 compe-
tition: a fully-onboard deep learning-based visual naviga-
tion framework trained only on simulation data. In detail,
we present i) an exhaustive discussion of our strategy, which
accounts for both the competition’s guidelines and the nano-
drone’s limitations; ii) a convolutional neural network (CNN)
for obstacle avoidance derived from the open-source PULP-
Dronet [9] and trained only on simulation images; iii) mitigation
of the sim-to-real gap [12] via aggressive photometric augmen-
tation, label balancing, and comprehensive data generation; iv)
three alternative navigation policies, which we characterize both
in simulation and in the field.

Our final system, employing the best-performing naviga-
tion policy, ranked first among six contending teams at the
IMAV’22 competition. In our best run, we scored 115m of
traveled distance in the allotted 5min-flight, never crashing,
dodging dynamic obstacles, and only using computational re-
sources aboard our nano-drone. Our result demonstrates the
effectiveness of the proposed sim-to-real mitigation strategy,
our implementation’s robustness, and our rationale’s soundness,
and by sharing our insights, we aim to provide the research
community with a solid groundwork for the evolution of this
field.

II. RELATED WORK

As the “Nanocopter Al Challenge” focuses on obstacle avoid-
ance (OA) and gate-based navigation (GN), in this section, we
focus on these two complex tasks surveying the SoA for various
class sizes of drones (Table I).

Obstacle avoidance: While racing micro-drones can carry
bulky sensors (e.g., Lidars [3], stereo cameras [2], [3]) and GPUs
with a power envelope of up to 30 W (Table I), nano-UAVs suffer
from limited perception capabilities due to their tiny low-power
sensors and microcontroller units (MCUs) [9]. State-of-the-Art
(SoA) perception algorithms, such as simultaneous localization

and mapping (SLAM) [13], can not run onboard nano-drones
due to their steep performance requirements. Even when run
off-board, they suffer from substantial performance degradation
as nano-drones employ low-quality sensors [14], [15].

Lightweight approaches better suited to nano-drones employ
different sensors such as Time-of-Flight (ToF) ranging sen-
sors [16], [17], [18]. These approaches can be implemented on-
board and provide robust obstacle avoidance, even in unknown
environments, with raw sensor readings or minimal onboard
processing (e.g., 30 OP /s in [18]), such as simple bug-inspired
lightweight state machines [16], [17]. However, in our com-
petition, only a low-resolution monochrome monocular camera
was allowed, narrowing the teams’ effort only to visual-based
approaches.

A lightweight vision-based system for pocket-sized drones
was presented by McGuire et al. [19], implementing depth
estimation with a stereo camera and achieving obstacle avoid-
ance at low speed (0.3m/s). The SoA visual-based CNN for
autonomous nano-drone navigation is PULP-Dronet [9], trained
on real-world data to predict a steering angle and a collision
probability based on a QVGA monocular image. PULP-Dronet
runs onboard the GAP8 SoC at 19 frame/s, proving in-field
obstacle avoidance capabilities up to a speed of 1.65m/s when
coping with a dynamic obstacle. As a result, at the IMAV
competition, 3 of 6 teams, including us, employed this CNN as
a starting point to build their visual obstacle avoidance pipeline.
First, we modified the PULP-Dronet reference implementation
in its task, i.e., the original CNN predicts a collision probability
and a steering angle. Instead, our model is optimized to predict
three collision probabilities by horizontally splitting the input
image into three regions. Then, we introduced a novel training
pipeline that exclusively relies on simulation, while the original
work uses real-world images based on autonomous driving cars.
Finally, we enriched our simulator with a photometric augmen-
tation pipeline, which increased the generalization capabilities
of our model up to a top-scoring in-field performance. Compared
to PULP-Dronet, this work targets more aggressive obstacle
avoidance capabilities: up to 2 m/s speed, concurrent static and
dynamic obstacles, and 5 min uninterrupted flight. A thorough
discussion on the comparison with the SoA PULP-Dronet is
presented in Section VI-B.

Gate-based navigation: SoA approaches for micro-drone
racing competitions tackle trajectory planning and optimiza-
tion, gate detection, and control [4]. However, their prohibitive
complexity prevents implementing them on nano-drones, even
without considering the computational budget needed by the
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(a) 10 x 10 m competition arena. (b) Robotic platform.

obstacle avoidance task. Time-optimal trajectory optimization
relies on model predictive control (MPC) solving linear algebra
athigh-frequency (~100 Hz) and with real-time constraints [20].
To cope with the MPC complexity, Foehn et al. [20] exploit an
NVIDIA Jetson TX2 GPU, which has ~ 60x higher computa-
tion capabilities than GAPS.

For gate detection, the SoA exploits either i) CNNs for
segmentation of high-resolution images [2], which results in
a computational complexity of more than 3 GOPs [2] per
inference, or ii) traditional computer vision approaches with
stereo images [3]: both are still out of reach for nano-drones.
Kaufmann et al. [7] proposed a simpler CNN for predicting the
gate’s poses directly from the image, but this technique runs at
only 10 Hz on a powerful (~13 W) Intel UpBoard and relies on
a coarse map of the gate’s positions.

PencilNet [8] is a lightweight CNN for gate pose estimation
trained on simulated images, addressing the sim-to-real gap with
an intermediate image representation. This model comprises
32k parameters and 53 k multiply-accumulate (MAC) opera-
tions per frame. From a computational/memory point of view,
this CNN is suitable for real-time execution on our nano-drone.
However, the gate pose estimation is only part of a more complex
pipeline to achieve gate-based navigation, which additionally
requires a memory-consuming mapping of the environment
and a more complex trajectory planning. For this reason, the
PencilNet CNN was demonstrated on a drone equipped with a
powerful Nvidia Jetson TX2, with a power consumption 75 x
higher than our nano-drone’s GAP8 SoC, and a high-end Intel
RealSense T265 for the state estimation.

More lightweight approaches for visual servoing have also
been demonstrated aboard autonomous nano-drones, based on
simple computer vision approaches, such as color segmentation,
to cope with the platform’s limited computational resources.
In [21], the authors used raw image data to detect and fly through
monochromatic gates, while in [22], a simple target-tracking
algorithm for monochromatic objects was introduced. However,
both works do not target high-speed scenarios, resulting in too
limited agility for drone racing.

III. THE IMAV’22 NANOCOPTER Al CHALLENGE

The competition: The metric to assess each team’s score is
the distance traveled within the mission area (the 8 X 8 m green
square shown in Fig. 2(a)) within the allotted time (5 min),
employing a Crazyflie 2.1 nano-drone. This distance is mea-
sured with a motion capture system that ignores the part of
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the trajectory lying outside the mission area. Participants can
choose between two coefficients of difficulty, one accounting for
environmental complexity (ceeny) and the other for computational
resources (Cicomp)- Additionally, in the arena, there are two
rectangular gates through which the nano-drone can fly; every
time the drone passes through a gate, the distance is increased
by an additional 10 m.

Participants can choose among three levels of environmen-
tal complexity: only static gates (e, = 1X), static gates and
obstacles (ceny = 5x), and static gates and dynamic obstacles
(aeny = 10x). If the nano-drone uses remote computation (i.e.,
Wi-Fi-connected commodity laptop), the ocomp is 1x; for on-
board computation, instead, it is cacomp = 5X. The final score is
calculated as follows:

Score = (Sdist +10- Sgates) * Qleny * Qcomp (H

where Sy is the total traveled distance and Sgyes i the number
of times the drone passes through the gates. Time counting is
never stopped (except for battery swaps): crashing, re-flashing,
rebooting, components replacements, and other flight interrup-
tions are allowed, but they will ultimately penalize the score.
The teams can choose the starting position of the drone, but
after a flight interruption, subsequent take-offs must occur near
the location where the flight was interrupted.

Robotic platform: All teams competed with the same robotic
platform comprising a COTS Bitcraze Crazyflie v2.1 drone and
two additional onboard modules, as shown in Fig. 2(b). The
drone is a modular 27 g 10 cm quadrotor integrating sensing,
communication, and actuation subsystems with an STM32F405
MCU for sensing, state estimation (through an extended Kalman
Filter) and control. The UAV can fly up to ~7 min employing a
250 mAh battery. The first additional module is the Flow-deck,
asmall (21 x 28 mm) printed circuit board (PCB) that provides
additional sensors to improve the state estimation: a VL53L1x
Time-of-Flight distance sensor for measuring the height from
the floor and a PMW3901 low-resolution (35 x 35px)
optical-flow camera.

The second expansion board employed is the Al-deck, a PCB
for vision-based onboard processing. The module embeds i)
an Himax HMO1BO low-power (~4 mW) QVGA monochrome
image sensor camera, ii) a NINA-W102 MCU supporting Wi-Fi
and Bluetooth communications, and iii) GAPS8, an ultra-low-
power (ULP) SoC capable of efficiently managing computation-
intensive workloads by employing hardware-enabled (8-core
cluster of processing cores) parallel programming paradigms.
The SoC also features standard interfacing peripherals (SPI,
12C, UART) as well as different hierarchically organized SRAM
memories (L1:64 kB L2:512 kB).

Simulator: The IMAV challenge organizers provided all teams
with a simulator developed and released by Bitcraze, based on
the open-source Webots robot simulator. The simulator includes
a simple PID controller for the attitude control of a Crazyflie
quadcopter. It emulates the 87° field of view of the drone’s
Himax camera, and it provides a photorealistic world model
of the competition arena. Several obstacles in the simulator
resemble the ones of the IMAV challenge, including an orange
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pole; an orange gate; three panels with a width of 1m, 1.5m,
and 3 m, respectively; curtains; carpets; nets.

Our strategy: Given IMAV’s rules, to maximize the overall
score, the nano-drone should: /) address two concurrent com-
plex vision-based tasks, i.e., obstacle avoidance and gate-based
navigation; ii) rely only on onboard computation; iii) operate
in the most challenging environment. Relying on off-board
computation can ease the computational burden. However, this
approach reduces the overall score due to the lower coefficient
of difficulty and decreases the drone’s reactiveness due to the
additional Wi-Fi communication latency. Instead, individually
addressing even one of the two tasks would represent a signifi-
cant step forward in the SoA. Neither simulation-based obstacle
avoidance nor gate-based navigation is still demonstrated in a
challenging autonomous nano-drones race. At the same time,
as previously discussed, the computational and memory lim-
itations of embedded platforms such as GAPS still constitute
a strong holdback against deploying multiple tasks simultane-
ously. Therefore, for the IMAV’22 competition, we prefer to
address only one of these tasks while challenging our system
with fully onboard computation (cemp = 5X) and maximum
environmental difficulty (aeny = 10%).

To choose which task to perform, we consider two ideal
nano-drones A and B flying at a mean speed of 1.5m/s in a
thought experiment. A performs obstacle avoidance in the most
complex environment (., = 10x), while B addresses gate-
based navigation in an obstacle-free scenario (e, = 1%). In a
5min flight, the A system would score 7500 points. Assuming
the two gates are 3 m apart, the B system would travel 750 m,
passing through the gates 250 times, leading to a final score of
3250 points. Therefore, we believe that with the rule set of this
competition, an autonomous nano-drone that quickly explores
its surroundings and reliably avoids collision with dynamic
obstacles (scenario A) has the potential to mark a higher score
than a system designed for gate-based navigation in the simpler
scenario B.

IV. NAVIGATION POLICIES

Deep Neural Network: The neural network used in this work
is derived from the open-source PULP-Dronet CNN [9]. We
keep the same network topology consisting of three consecutive
residual blocks (ResBlocks). Each ResBlock comprises a pri-
mary branch that executes two 3 x 3 convolutional layers and a
parallel by-pass employing a 1 x 1 convolutional layer. Unlike
the previous work, whose outputs consisted of a single collision
probability and a steering angle, our CNN features three collision
probabilities by splitting the input image horizontally in three
54 x 162 px left, center, and right portions of the field-of-view
(FoV). We exploit only simulated data to train the network, and
the data collection procedure is detailed in Section V. After
training the network, we apply fixed-point 8-bit quantization to
its weights to: i) reduce the CNN’s memory footprint by 4x,
resulting in a size of 317 kB, and ii) to enable optimized 8-bit
fixed-point arithmetic, resulting in a throughput of 30 frame/s
when deployed on GAPS. We define three navigation policies
that rely on the CNN outputs: Baseline, Policy 1, and Policy 2.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 2, FEBRUARY 2024

Baseline: For each input image, the drone flies towards the
direction with the lowest collision probability among the three
CNN’s outputs. In case all three probabilities are higher than a
given threshold 7}, the drone spins in place by 180 © 4- a random
angle in the [0 °, 30 °] range. To generate the training labels for
this model, only actual objects in the environment (i.e., panels,
cylinders, walls, gates, etc.) are considered obstacles.

Policy 1: Same as the baseline policy, with the difference that
the training labels are generated considering as an obstacle also
the ground outside the mission area, i.e., black and blue stripes
in Fig. 2(a), as well as surrounding walls.

Policy 2: The three probabilities of collision are trained as
in Policy 1, and if at least one of them is higher than a given
threshold 7, the drone will behave as in the previous two policies.
Otherwise, if all probabilities of collision are lower than 7}, the
drone will try to reach one of the four waypoints (WPs) defined as
the corners of a square inscribed in the mission area, WP; 5 3 4 in
Fig. 2(a). This WP-based navigation mechanism leverages i) the
a priori knowledge of the take-off point, i.e., we can choose the
take-off point/orientation of the drone, for example, in WP ; and
ii) the onboard visual-inertial state estimation which provides
the relative position of the drone w.r.t. the take-off point. Then,
when the drone is in the WP-based navigation mode, it will try
to visit the WPs in a predefined cyclical order; for example,
WP 2 3 4 produces a counterclockwise motion, and WPy 3 2 1
a clockwise one. Lastly, to mark a WP as “visited,” we define a
circular area of radius r centered in each WP (inred in Fig. 2(a)):
when the drone enters such an area, we mark the corresponding
WP as visited and continue with the next one. Whenever all three
collision probabilities are higher than the threshold 77,, we invert
the sequence of the targeted waypoints, alternating a clockwise
and counterclockwise direction. This mechanism also serves as
an escape strategy when a WP is unreachable.

Rationale discussion: Autonomous drones flying with a priori
knowledge of the environment, i.e., a map, are highly effec-
tive as we can plan for the best trajectory. Unfortunately, the
ultra-constrained resources (memory, computation, and sensors)
aboard a nano-drone make this map-based navigation unfeasi-
ble [14] or extremely limited [13]. However, in the IMAV’22
competition, we can exploit coarse-grained information, as we
know the size of the mission area, the colors of the ground, and —
up to some degree — the shape/texture/colors of the objects thanks
to the simulator provided by the organizers. Since obstacles and
gates are more likely to populate the inner part of the flying area
rather than its borders, Policy 2 tries to maximize the likelihood
of a straight obstacle-free path by positioning the WPs at the
edges of a square.

Therefore, ideally, we should place our four WPs precisely
on the edges of the green square in Fig. 2(a). However, the
unavoidable noise/drift of the simple state estimation aboard our
nano-drone would often drive the vehicle outside the mission
field, negatively impacting the final score. For this reason, we
introduce the WPs as the edges of an inner square within the
available 8 X 8 m mission area.

State estimation analysis: We characterize the position and
orientation error of the Crazyflie’s state estimation subsystem.
This allows us to determine a margin between the WPs and the
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Fig. 3. (a) 1024 simulated Monte Carlo trajectory realizations (b) minimum
safety margin w.r.t. height, (c) minimum safety margin w.r.t speed, having fixed
the height to 0.5 m.

corners of the mission area that i) keeps the drone flying close
to the edges of the area and ii) minimizes the risk that state
estimation drift drives the drone out of the area. We start by col-
lecting real-world flight data, which we use to build a statistical
model. We rely on a setup similar to IMAV competition with
artificial turf on the floor, albeit over a smaller 5 x 6 m flying
area. We record the drone’s movements with a motion-capture
system and the drone’s onboard state estimation, both at 100 Hz.
We perform runs of 5 min each, in which the drone flies using a
random walk policy while constrained through the mocap into
an empty squared area — smaller than our 5 X 6 m arena. We
perform 16 flights: two runs for each configuration combining
two flight heights, i.e., 0.5 and 1.0 m, and four mean speeds, i.e.,
0.5,1.0,1.5,2.0m/s.

Similarly to [23, Sec. 5.2.4], we quantify the state estimation
error by modeling the uncertainty on incremental state estima-
tion updates. We sample many ten-second time windows from
the collected data, considering the relative pose of the drone
at the beginning and the end of each window. We measure the
estimation error separately for each component of the relative
pose: x, y, and yaw. For each component, we fit a Gaussian
distribution to the errors measured over many windows, then we
rescale the distribution to represent the error accumulating in 1 s.

Then, in the Webots simulator, we collect eight runs, i.e.,
all combinations of heights and speeds, of 5min each (red
lines in Fig. 3(a)). The drone follows a squared trajectory on
a 6 x 6m square, which is intuitively a safe configuration.
We invert the flown path for each lap by alternating clock-
wise/counterclockwise directions to ensure that any systematic
errors in yaw estimation (e.g., a consistent under/over-estimation
of the amount of rotation) cancel out rather than accumulate.
We use these eight flown trajectories to build a bounding box
enclosing them (dashed black line in Fig. 3(a)). We apply the
statistical error model to corrupt the ideal squared trajectory,
computing 1024 Monte Carlo (M. C.) realizations of the drone’s
state estimation (pale gray lines in Fig. 3(a)). Then, only consid-
ering the portion of the M. C. trajectories outside the bounding
box, we measure the maximum distance between them and the
box itself. This measure gives us a statistical minimum safety
margin distribution that will likely constrain the flight within
the desired flight area.
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Fig. 3(b) shows (average on all speeds) that flying at 0.5 m
height requires a lower safety margin than at 1.0 m, centering
the distribution at 1.08 m and 1.56 m, respectively. Therefore,
we select 0.5 m as our target height, and we focus only on this
configuration in Fig. 3(c), where we explore the four velocities.
Among all velocities, 42% of the 1024 realizations never exceed
a safety margin of 1 m, while 95.3% satisfy a margin of 2m.
Furthermore, the median time spent outside the 1 m margin is
2s (95th percentile: 31 s) per realization. Finally, of the 4.7% of
realizations that cross the margin of 2 m, the median number of
crossings is only one per realization (95th percentile: 5). These
findings confirm that positioning our WPs at the edges of a 6 x
6 m square will /) keep the drone in the desired 8 x 8 m mission
area on average for 97.6% of the 5 min run’s time; and ii) cause
the drone to exceed the maximum 10 x 10 m space, i.e., crash,
only with 4.7% probability and only once per run. Finally, the
four flight speeds analyzed do not significantly impact the safety
margin requirements, which leads us to use the highest speed:
2.0m/s.

V. CNN TRAINING AND DEPLOYMENT

Dataset collection: We use the Webots simulator, shown
in Fig. 6(a), to collect a dataset of images for our CNN. To
automatically generate the labels for each image, we extended
the simulator’s capabilities by introducing the generation of
depth and segmentation frames from the camera. During the
image collection, we use a flight height of 0.5 m, see Section IV.
Furthermore, to mimic the dynamic effects of an actual UAV
flight, we add random variations for pitch, roll, and yaw in a
[—5°; +5°] range and for the height in a [0.45; 0.55] m range.

We collect images with a 324 x 324 px resolution and 87°
FoV, the same as our Himax camera. For each image, we save
per-pixel depth and segmentation masks, which we exploit for
labeling: we divide the camera FoV into three vertical portions
of 108 x 324 px, and for each portion, we set a collision label
= 1 if the 10% of the pixels belonging to obstacles has distance
<2m, 0 otherwise. We consider all kinds of objects as obstacles,
including gates and excluding carpets. We collected 41 k images
in 3 simulated scenarios to ensure labels balancing and uniform
sample distribution. 10 k images are collected by spawning the
drone randomly across the arena populated by obstacles, and
21k images are acquired by flying around each obstacle in the
simulator. This last group comes from a “360 scan” of each
obstacle, which we equally split between images with an empty
background and a populated one. Finally, 10 k images are taken
from the drone flying along a square trajectory, 50 cm within
the green flying area edges, equally split between clockwise
and counterclockwise flight directions. Eventually, we split each
portion of the dataset using 70% of the images for training, 10%
for validation, and 20% for testing.

Photometric augmentations: As the simulated images are
noise-free 3D renderings of the scene, we introduce an aggres-
sive data augmentation pipeline to bridge the appearance gap
with real-world Himax images. We randomly perturb the sim-
ulated images to reproduce several real-world image artifacts:
motion blur, Gaussian blur to simulate lens defocusing, Gaussian
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(b) Augmentation:

(2) simulator

Fig. 4. Images: (a) from the simulator, (b) after augmentation, (c¢) Himax
camera sample collected in the IMAV arena. The three blue bars in images
(b) and (c) represent the three collision probabilities predicted by our network.

TABLE I
NEURAL NETWORK ACCURACY BY PHOTOMETRIC AUGMENTATION METHOD:
NoIsk (N), BLUR (B), AND EXPOSURE (E)

Aug. N None B B+E N+B E N+E N+B+E
Ace.  55% 56% < 58% 62% 64% 68%  69% 2%
GAP8 STM32

CNN output
Camera CNN
acquisition inference
Process Navigation
CNN output policy

Update

Write UART state estim.

o s e |
Probability
of collision

Update
set-point

Fig. 5. Drone’s state machines mapped on the MCUs available aboard.

noise, and exposure changes (gain, gamma, dynamic range, and
vignetting). Finally, we convert images to grayscale and resize
them to 162 x 162 px, as our Himax camera.

Fig. 4(a) and (b) and the supplementary video show the result
of this photometric pipeline, while Fig. 4(c) displays a real drone
frame. We assess the impact of the photometric augmentations
on CNN accuracy by exploring all eight combinations of expo-
sure, blur, and noise augmentations. To evaluate the accuracy,
we collected 2200 real-world images from our 5 x 6 m indoor
flying arena, shown in Fig. 6(b). The results in Table II shows
that enabling all augmentations scores the highest accuracy,
surpassing the non-augmented model by 17%.

Navigation policies implementation: Fig. 5 shows the state
machines mapped on the two MCUs available aboard our UAV.
GAPS implements a loop for i) image acquisition, ii) CNN
inference, and iii) UART transmission of the 3 CNN collision
probability outputs, i.e., {left, center, right}, to the STM32. The
STM32 instead implements two loops for high and low-level
control of the drone, respectively. The high-level control loop i)
reads the CNN’s output from UART, ii) converts the 8-bit fixed-
point CNN’s outputs ([0,255] range) to £1loat32 numbers
([0,1] range) and applies a low pass filter, iii) thresholds the three
probabilities of collision to7;, = 0.7, getting values € {0, 1},iv)
applies the navigation policy to calculate the next set point, and v)
updates the low-level controller. Instead, the low-level control
loop, running at 100 Hz, updates the state estimation through
the eKF and applies a cascade of PID controllers to reach the set
point pushed by the high-level control loop.

All three navigation policies described in Section IV output
a {speed, yaw rate} tuple as a set point. For all policies, the
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Fig.6. Three environments: (a) The Webots simulator, (b) our indoor 5 x 6 m
arena, and (c) the 8 x 8 m competition arena.

speed=1.0 m/s speed=1.5 m/s speed=2.0 m/s

Baseline }—I]:l—{ }—|:[|—{ }—D:'-{
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Distance [m] Distance [m] Distance [m]

Fig. 7. Median traveled distance (10 runs) in 5 min flights on the simulator
of our three navigation policies at 1.0, 1.5, and 2.0 m/s.

forward speed is inversely proportional to the center collision
probability. The yaw rate is set to —90 or +90 deg /s when
the right or the left collision probabilities get over the threshold
th, respectively. If all three collision probabilities exceed the
threshold 7}, the drone spins in place as described in Section IV.
Conversely, the three policies act differently when all collision
probabilities are zero: Baseline and Policy 1 command the drone
to fly in a straight line, while Policy 2 activates the WP-based
navigation mode, heading the drone to the next WP.

V1. EXPERIMENTAL RESULTS
A. In-Simulator Evaluation

We evaluate our three navigation policies with the Webots-
based simulator, sample picture shown in Fig. 6(a). We rely
on an ideal flight controller inside the simulator, meaning i)
no state-estimation drift and ii) exploiting depth maps for ideal
obstacle avoidance. We tested nine configurations combining
the three control policies introduced in Section IV and at three
speeds (1,1.5, and 2m/s). For all the tests, we used seven
obstacles: two orange poles, two gates, and three panels with a
width of 1, 1.5, and 3 m, respectively. We run ten experiments of
5 min each for each configuration, varying the obstacles’ initial
position but keeping it consistent among the nine configurations.
To emulate the dynamic obstacles of the challenge, we move
one obstacle every 30s. We compare the policies based on the
distance traveled on the green turf.

Fig. 7 shows that the baseline policy (which does not consider
the floor outside the green turf as an obstacle) is consistently
worse than the others, spending 16% of the time outside the
mission area. Conversely, Policy 1 and 2 detect the external area
as an obstacle, spending only 1% and 0.8% of the time on the ex-
ternal area, respectively. Both Policy 1 and 2 benefit from higher
flight speeds due to the simulator’s perfect sensing preventing
collisions. At the lowest speed configuration of 1 m/s, Policy 2
achieves a slightly lower median distance than Policy 1, 165 m
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speed=1.0 m/s speed=1.5 m/s speed=2.0 m/s

PULP-Dronet
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Fig. 8. Median traveled distance (10 runs) in 5 min flights on the simulator
comparing our work to the SOA PULP-Dronet [9] at 1.0, 1.5, and 2.0 m/s.

vs. 169 m. Instead, for higher speed configurations, the median
distance of Policy 1 is slightly lower than Policy 2: 217 m and
246 m at 1.5m/s, and 193 m and 225 m at 2m/s, respectively.
Since both Policy 1 and Policy 2 score a similar traveled distance,
we push forward our analysis by deploying and testing both of
them in the field.

B. State-of-the-Art Comparison

Since our CNNs are inspired by the PULP-Dronet [9], as well
as many other teams at the competition, we present a thorough
comparison of our system against a vanilla PULP-Dronet and a
fine-tuned version of it. Given the different outputs between our
CNN and the original one, we adapt our navigation Policy 1 (no
WPs) to the PULP-Dronet baselines. We use the PULP-Dronet
steering output, as in its original implementation, by converting
it in a yaw-rate for the controller in case of a probability of
collision lower than 0.7, while the drone rotates 180° otherwise.
For the fine-tuned version, we use the same dataset collected
in simulation to train our models. The single collision label
of PULP-Dronet is matched to the central probability of our
models, while the steering angle reflects the direction with the
lower probability of collision among the three probabilities: left,
center, and right.

The results in Fig. 8 are collected in simulation, where we run
ten 5- min tests for each model at three target flight speeds (i.e.,
1, 1.5, and 2m/s). The vanilla PULP-Dronet marks the lowest
score in all configurations, 84—114% less than our system, while
the fine-tuned PULP-Dronet reduces this gap with a performance
reduction of 28%—43%, depending on the flight speed. Our
network scores a median distance traveled of 171, 199, and
228 m at 1, 1.5, and 2m/s, respectively, showing the benefit
of our architectural changes and training methodology.

C. In-Field Evaluation

We evaluate Policy 1 and Policy 2 in our 5 X 6 m indoor
flying arena, testing them with two target speeds, 1.5 and 2 m/s,
resulting in four configurations. For each configuration, we
perform 5 runs of 5min each. We use three black cylinders
and two white panels as obstacles, as shown in Fig. 6(b). We
replicate the competition’s conditions, e.g., periodically moving
the dynamic obstacles (every ~30s), and without stopping the
time count if the drone crashes. As shown in Fig. 9(a), Policy 1
scores a median 45 and 65 m, while Policy 2 marks a median
91 and 92 m, while flying at 1.5 and 2m/s, respectively. The
improved performance of Policy 2 derives from the WP-based
navigation, which provides the drone with boundaries, limiting
the time spent in potentially dangerous areas outside the mission
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Fig. 9. In-field testing, (a) median traveled distance (5 runs) in 5 min flights
of our two navigation policies at 1.5 and 2.0 m/s. (b) Sample run of Policy 2
with a varger = 1.5m/s, scoring 117 m of traveled distance.

Policy 2 Policy 1
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TABLE III
FINAL LEADERBOARD OF THE “NANOCOPTER Al CHALLENGE”

Team Processing  Obstacles [m] / Gates Score
PULP (ours) Onboard Dynamic 115/0 5750
Black Bee Drones Onboard Static 81/0 2015
SkyRats Onboard Dynamic 29 /1 1945
CVAR-UPM Off-board Dynamic 31/4 702

CrazyFlieFolder Off-board Dynamic 67/0 666

RSA Off-board No 9/0 9

field. A sample run of Policy 2 is shown in Fig. 9(b). For the
IMAV competition, we choose to use the Policy 2 at 1.5m/s
for the first run (conservative) and push our system to the 2 m/s
limit in our second attempt.

D. The Nanocopter Al Challenge

The arena for the competition was a 10 x 10m area, rep-
resented in Fig. 2(a), where only the 8 x 8 m green surface is
considered for the final score. The arena had ten objects (Fig. 6):
four orange poles, two black panels, two flags, and two gates. The
competition allows each team to perform two runs of 5 min each,
having only the best one considered in the final leaderboard. Six
teams participated, and the video recording is available online.'
For each team, Table III summarizes the distance traveled, the
number of gates passed, and the final score computed according
to (1).

The last team achieved a traveled distance of 9m in an
obstacle-free environment while employing an off-board (i.e.,
WiFi-connected laptop) color segmentation algorithm. The 5%
ranked team tackled an obstacle avoidance task using an off-
board CNN for monocular depth estimation. They exploited the
depth to control the drone’s forward speed and steering angle
commands, ultimately reaching a traveled distance of 67 m.
The 4"-classified team proposed a system that passed through
four gates, i.e., the highest number of traversed gates among
all teams. They tackled gate-based navigation with an off-board
color segmentation visual pipeline. However, their final traveled
distance of 31 m was penalized by numerous crashes, wasting
precious time for resuming the flight.

The team ranked 3™ used an onboard vanilla PULP-Dronet
for obstacle avoidance, which led to a conservative ~0.1m/s
average speed on their best 5- min run (run I). Nevertheless, they
managed to pass through one gate while crashing multiple times
(up to five in run 2), resulting in a traveled distance of 29 m. The
second classified team exploited only onboard computation in a
static obstacles environment. Their navigation strategy limited

![Online]. Available: http:/youtu.be/WaDU4I2TImA
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run 1 target: 1.5m/s run 2 target: 2.0m/s of the IMAV’22 conference for sharing with us the trajectory
recordings.
*ﬁnish

10m
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Fig. 10. Trajectories of our two runs during the IMAV’22 race: Run 1 ranked
our team 1st at the “Nanocopter Al challenge.”

the exploration to a small obstacle-free part of the environment,
leading to a total distance of 81 m.

We tackled the most challenging scenario, i.e., dynamic ob-
stacles, with only onboard computation (i.e., no WiFi-connected
laptop), while leveraging our Policy 2, described in Section IV.
In our two runs, we set a maximum target speed of 1.5 2.0m/s,
which resulted in a traveled distance of 115 and 97m, re-
spectively. During the first and best run, we never crashed for
the entire 5-minute flight, resulting in the winning score of
5750 points, i.e., almost 3x more than the second-classified
team. Fig. 10 summarizes our two runs, reporting a top-view
of the arena where flight trajectories are shown with their mean
average speed.

VII. CONCLUSION AND FUTURE WORK

We present the deep learning framework for visual-based
autonomous navigation aboard nano-drones, winning the
“IMAV’22 Nanocopter Al Challenge” drone race. Our sys-
tem combines a CNN for obstacle avoidance, trained only in
simulation, a sim-to-real mitigation strategy, and a navigation
policy, defining the drone’s control state machine. Our system
scored 115m of traveled distance at the competition while
coping with static and dynamic obstacles. As we focused on the
most challenging obstacle avoidance task while leaving out the
gate-based navigation task, future work will address developing
lightweight perception modules for both tasks. Nevertheless, our
system marks the SoA being the first example of an autonomous
nano-drone completing its mission (5 min flight, at 1.5 m/s with
no crashes) in a challenging never-seen-before race environ-
ment. Additionally, any bigger robot can exploit our lightweight
yet accurate and reactive perception, freeing a vast amount of
computational resources and memory that can be allocated to
tackle additional tasks. By sharing our knowledge, we foster
future research by providing a solid foundation in the newborn
field of nano-drone racing.
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