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a b s t r a c t 

We introduce a new outdoor urban 3D pointcloud dataset, covering a total area of 2 . 7 km 

2 , sampled from 

three Swiss cities with different characteristics. The dataset is manually annotated for semantic segmen- 

tation with per-point labels, and is built using photogrammetry from images acquired by multirotors 

equipped with high-resolution cameras. In contrast to datasets acquired with ground LiDAR sensors, the 

resulting point clouds are uniformly dense and complete, and are useful to disparate applications, in- 

cluding autonomous driving, gaming and smart city planning. As a benchmark, we report quantitative 

results of PointNet++, an established point-based deep 3D semantic segmentation model; on this model, 

we additionally study the impact of using different cities for model generalization. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Many recent achievements of deep learning depend on the 

vailability of large labeled training datasets [10,27] , such as Ima- 

eNet [9] for image classification and MS COCO [18] for image seg- 

entation. In this work, we propose a new dataset of dense urban 

D pointclouds, spanning 2 . 7 km 

2 , acquired using photogrammetry 

rom three cities in Switzerland (Zurich, Zug and Davos). The entire 

ataset is manually annotated with dense labels, which associate 

 point to one of five categories: terrain, construction, vegetation, 

ehicle, and urban asset. 

The main goal of the dataset is to train semantic segmentation 

lgorithms for urban environments. Semantic segmentation con- 

ists in partitioning the data into multiple sets of points, such that 

ach set represents only objects of a given type. The problem is rel- 
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vant for many real-world applications, such as autonomous driv- 

ng, content generation for games [15] , augmented reality applica- 

ions, and city planning [35] . 

Most existing datasets [3,25,30] for outdoor 3D semantic seg- 

entation are motivated by real-time autonomous driving appli- 

ations, and are therefore acquired at low resolution by street- 

evel Light Detection and Ranging (LiDAR) sensors; this yields in- 

omplete point clouds (for example, areas far from roads, such as 

oofs, are either not acquired or acquired with very low resolution) 

hich are unsuitable for applications such as city planning, urban 

ugmented or virtual reality (AR/VR), or gaming. In contrast, we 

cquire high-resolution photographs from unmanned aerial vehi- 

les (UAV) flying on a grid pattern over the area of interest, then 

econstruct the 3D shape using photogrammetry; this allows us 

o densely acquire most outdoor surfaces. Similar approaches have 

een previously adopted for several applications, including auto- 

atic urban area mapping [20] , damage detection [19] , and cul- 

ural heritage site mapping for digital preservation [22] . Compared 

o 3D models built by satellite-borne cameras, this approach yields 

odels with higher-resolution geometry and texture. 

https://doi.org/10.1016/j.patrec.2021.06.004
http://www.ScienceDirect.com
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Table 1 

Comparison of our datasets with the common 3D pointcloud datasets in the literature. The spatial size denotes either the covered area or 

the driven length (in the case of mobile LiDAR captures) for a dataset. 

Paper 

Data 

Acquisition 

Spatial 

Size City Cat. RGB Points 

SemanticKITTI [3] Mobile LiDAR 39 . 2 × 10 3 m Karlsruhe 25 No 4549M 

Paris-Lille3D [25] Mobile LiDAR 1 . 94 × 10 3 m Paris, Lille 9 No 143M 

Toronto3D [30] Mobile LiDAR 1 × 10 3 m Toronto 8 Yes 78.3M 

Semantic3D [12] Static LiDAR - St. Gallen 8 Yes 4009M 

ISPRS [21] Aerial LiDAR - Vaihingen 9 No 1.2M 

DublinCity [38] Aerial LiDAR 2 × 10 6 m 

2 Dublin 13 No 260M 

DALES [31] Aerial LiDAR 10 × 10 6 m 

2 Surrey (BC) 8 No 505M 

SenSatUrban [16] UAV Pho- 

togrammetry 

6 × 10 6 m 

2 Birmingham, 

Cambridge 

13 Yes 2847M 

Swiss3DCities (this 

paper) 

UAV Pho- 

togrammetry 

2 . 7 × 10 6 m 

2 Zurich, Zug, 

Davos 

5 Yes 226M 

(Sparse: 7.5M, 

Dense: 3147M) 
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High resolution data yields more accurate models, but also 

ids the segmentation task because it contains more information 

o discriminate between different classes; currently, state-of-the- 

rt models for 3D semantic segmentation rely on deep learn- 

ng [4,11,36] and represent input data as voxels [37] , points [23] or 

eshes [17] ; other approaches render multiple views of the 

D scene and then rely on 2D semantic segmentation mod- 

ls [5,28,29] , which can be trained on more abundant 2D labeled 

emantic segmentation datasets. 

To show the potential of our dataset for training and evaluating 

egmentation algorithms, we consider the well-established Point- 

et++ model [23,24] and report its performance when using dif- 

erent splits for training and evaluation. In particular, the perfor- 

ance of machine learning models depends not only on the size 

f the training dataset, but also on how representative it is of the 

valuation data: often, models trained on large amounts of data 

rom a given environment fail to generalize to a different target 

nvironment. Because our dataset contains data from three cities 

ith different characteristics, it can be used to explore this funda- 

ental aspect. 

The rest of the paper is organized into five sections. We first 

escribe related commonly-used datasets for 3D semantic segmen- 

ation in Section 2 . Then, in Section 3 we present our main con-

ribution : a new pointwise labeled multi-city dataset for seman- 

ic segmentation of outdoor 3D point clouds, which we release to 

he research community in three versions with different point den- 

ities 1 ; we characterize the dataset and describe data acquisition, 

rocessing and manual labeling pipelines. In Section 4 we describe 

he applied deep learning model to demonstrate semantic seg- 

entation task on our dataset. We discuss quantitative results in 

ection 5 , where we also explore the model’s generalization abil- 

ty across different cities ( secondary contribution ). Section 6 con- 

ludes the paper. 

. Related work 

This section summarizes relevant pointcloud datasets with se- 

antic segmentation labels (see Table 1 ). One fundamental differ- 

nce among the datasets is their acquisition modality, i.e. LiDAR or 

hotogrammetry. 

.1. LiDAR datasets 

A lot of recent research effort s are related to autonomous driv- 

ng applications: in particular, recognizing and segmenting roads 

nd relevant urban elements from images or 3D point clouds ac- 

uired by the car itself. In this context, laser scanning systems, 
1 https://github.com/NomokoAG/Swiss3DCities 

t

w

109 
.g. Velodyne HDL-64E [32] , are commonly used to acquire high- 

ccuracy LiDAR pointcloud sequences from a car’s point of view. 

aris-Lille [25] , Semantic KITTI [3] , and Toronto3D dataset [30] are 

mong such large-scale datasets with pointwise semantic labels. 

Due to the low-lying viewpoint and focus on driving-related 

egmentation tasks, these mobile LiDAR datasets show incomplete 

oint clouds: e.g. the upper floors or roofs of the buildings are 

sually not captured. Even though these datasets serve their main 

cope very well, they are not suitable for other applications, such 

s urban planning. 

Semantic3D dataset [12] is a large-scale pointcloud dataset with 

er-point semantic labels. This dataset is acquired via a static ter- 

estrial laser scanning system in the north-east of Switzerland. Sev- 

ral points to note about this dataset are gaps due the occlusions 

also known as LiDAR shadows), moving object artifacts, and vary- 

ng point density based on the distance of the laser system to each 

urface or object in the scene. 

As captured from air (either from a UAV or a helicopter), aerial 

iDAR datasets such as ISPRS airborne LiDAR pointcloud dataset 

21] , DublinCity dataset [38] and DALES dataset [31] are also rel- 

vant in our context. One important difference of these datasets 

ith respect to ours is that, due to the narrow divergence of 

aser beams, they can sometimes capture ground samples even 

hen covered by vegetation. Compared to the DublinCity aerial Li- 

AR dataset [38] , ours covers a moderately larger area and, in the 

edium-density version, has a similar point density. This shows 

he relevance of our contribution with respect to existing aerial Li- 

AR datasets. 

Photogrammetric pointclouds 

Sun3D [34] and Stanford Large-Scale Indoor Spaces 3D (S3DIS) 

1] are commonly used pointcloud datasets acquired using 

tructure-from-Motion (SfM) 3D reconstruction techniques. These 

atasets are focused on indoor scenes, and present interesting 

hallenges for computer vision research, such as the presence of 

lutter, and relevant context around different objects, that can play 

 role in scene understanding. Due to their limited extent, the cap- 

uring process is much less challenging than in large-scale outdoor 

ontexts, which also need to account for variability of weather, il- 

umination conditions, and scales of represented objects. 

The Pix4D dataset [2] comprises of aerial photogrammetric 

ointclouds from three outdoor scenes with different distributions 

f urban surfaces or objects. The authors emphasize the impor- 

ance of color features apart from geometric features to classify 

hese pointclouds into 6 semantic classes. This dataset is relatively 

mall-scale, since it comprises of only three scenes with a total of 

8.2 million points. 

The SenSatUrban dataset [16] is also reconstructed via pho- 

ogrammetry from aerial photographs. The photographs are taken 

ith a UAV that follows a double-grid flight path and covers a 
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2 area in three cities in UK (Birmingham, Cambridge, and 

ork). Pointwise semantic labels in 13 categories are available for 

hese pointclouds. As an urban-focused aerial photogrammetric 

ointcloud, the SenSatUrban dataset is the most relevant with re- 

pect to our contribution. SenSatUrban covers an approximately 

wice large area, and uses 13 categories instead of five; its point 

ensity is higher than our medium-density version, but lower than 

ur high-density version. 

. Dataset description 

We describe the process used to produce our large scale aerial 

hotogrammetry dataset, covering both acquisition of source pho- 

ographs and processing to obtain 3D point clouds. We conclude 

he section by detailing the data characteristics. 

.1. Data acquisition 

The image data is acquired via a high-resolution camera array 

nadir and oblique cameras) mounted on a multirotor drone. 

To capture the image data, the drone is configured to trigger 

he cameras simultaneously at regular intervals while following a 

ouble grid flight path [26] . 

Each flight acquires one or more tiles. Each tile corresponds to 

12m × 412m horizontal area approximately (around 17 hectares). 

he Ground Sampling Distance (GSD), i.e. the inter-pixel distance 

easured on the ground, is measured as 1.28cm. 

.2. Data processing 

After aerial image acquisition, we follow a classic photogram- 

etry workflow to reconstruct textured 3D models, based on Real- 

tyCapture [6,14] , a commercial software. 

We first estimate the global camera poses of the captured im- 

ges and a georeferenced sparse point cloud of the scene using a 

tandard SfM process (referred as ”alignment” in RealityCapture). 

eoreferencing is achieved using Ground Control Points (GCPs) 

nd RealityCapture’s GCP annotation tool. Taking into account the 

rone-based acquisition described above, the GCP annotation, and 

he further processing of the data, we measure a total georefer- 

ncing root mean square error (RMSE) of 5.45cm horizontally and 

1.60cm vertically. This implies that the data is scaled to real world 

nits, meters in our case. For convenience, we provide all point co- 

rdinates as zero-centered per tile in our dataset. 

Once the data is aligned and georeferenced, we reconstruct a 

ense mesh constrained to the geographic region of the tile. The 

aw mesh can contain up to half a billion polygons for a single 

ile. To get a mesh with a more manageable size, we simplify it to 

 maximum number of 30 million polygons, i.e. approximately 15 

illion vertices, with Reality Capture and texture it using the cap- 

ured drone images. The output point cloud used for segmentation 

s composed of the vertices of such a mesh; the RGB color of each 

oint is sampled from the mesh texture. 

.3. Manual segmentation 

Our pointclouds are segmented manually into the five semantic 

ategories: terrain, construction, vegetation, vehicles and urban as- 

ets. 3D artists complete this task using off-the-shelf 3D modeling 

oftware (such as Blender [8] ); to make the process manageable, 

hey work on each tile individually, and operate on a 1-million 

olygon mesh further simplified from the initial mesh. It takes be- 

ween six to twelve hours for a 3D artist to manually segment each 

ile. 

Labels are then transferred from the simplified mesh to the 

utput point cloud. The label of each point in the output point 
110 
loud is assigned by finding the nearest neighbor in the segmented 

esh. We used an adaptive distance threshold to avoid matching 

utlier points. We found that this method gives satisfying results 

or the final segmentation of the point cloud while keeping the 

mount of manual work needed at a manageable level. 

.4. Dataset details 

The dataset represents sixteen tiles acquired from three cities 

n Switzerland (see Fig. 1 ): six tiles from Zurich, five tiles from Zug 

nd five tiles from Davos. 

For each tile, the dataset contains pointclouds at three resolu- 

ions, i.e. approximately 500 K, 15 M, and 225 M points per tile as 

hown in Fig. 2 . Both 500 K and 15 M point density pointclouds 

ave x,y,z, and RGB color features. For the highest density, we have 

nly x,y,z coordinates. In the rest of this paper, we only consider 

he medium (15M) point density. 

Classes and class distribution As our dataset is focused on ur- 

an areas in Switzerland, it comprises of a large amount of terrain, 

uilding, and vegetation. Even though many objects of other cate- 

ories (such as vehicles or urban assets) are present in our dataset, 

hey amount to a relatively small portion of the points because 

ach object is relatively small. Therefore, we divide our semantic 

abeling to only five main categories: 1) terrain (including natural 

errain, e.g. grass or soil, impervious terrain, e.g. road or sidewalk, 

nd water areas, e.g. river or lake); 2) building; 3) urban asset (in- 

luding traffic light, pole, crane, public transportation stop, trash 

in, etc.); 4) vegetation (tree or bush); and 5) vehicle (car, bike, 

cooter, etc.). The total number of points per category are as fol- 

ows: terrain - 64,4 91,34 9, construction - 104,144,973, urban asset 

 2,681,512, vegetation - 52,524,820, and vehicle - 2,730,595. 

. Semantic segmentation 

To provide baseline performance metrics, we report experi- 

ents using PointNet++ [24] , a well-established pointcloud seg- 

entation approach. 

.1. PointNet++ 

PointNet++ [24] is a deep learning model built upon the Point- 

et [23] model. In the PointNet++ architecture, PointNet module 

s used as a local feature encoder and applied in a nested fashion 

o learn hierarchical features. Moreover, PointNet++ uses farthest 

oint sampling to cover more representative points during sam- 

ling. 

We adopt an existing implementation [33] of PointNet++. For a 

iven instance, the input of the model is a N × 6 matrix, each row 

ontaining the x, y, z coordinates and R, G, B color of one of N input 

oints. The output of the model is a matrix of N × K prediction 

robabilities, where K = 5 is the number of classes. Because the 

odel is designed to handle input pointclouds up to a few thou- 

and points ( N = 8192 in our reference implementation), it cannot 

e directly applied to our large outdoor datasets; therefore, we 

mplemented the following data pipeline. First, we partition the 

nput data into columns with a base of 10 m × 10 m and infinite 

eight. During training and validation, each instance is generated 

y picking a column, then randomly sampling (with replacement) 

points from the column. A training epoch is obtained by gener- 

ting one instance per column. For every epoch, the instances are 

ampled again; this yields a form of data augmentation since for 

ach column a different subset of points is sampled. 

Once a model is trained, in order to segment a testing tile, we 

pply the model to every column separately, then merge the seg- 

entation results. To segment a column, we randomly divide the 

oints in the column in subsets, each containing exactly N points; 
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Fig. 1. A map of (a) highly-populated urban Zurich center, (c) rural and industrial Zug-Cham region, and (d) mountainous Davos region. 

Fig. 2. (a) A part of the simplified mesh with 1M polygons, (b) the medium point cloud with 15M vertices, (c) the semantic groundtruth, and (d) the dense pointcloud with 

around 220M points for PC 1 (Davos 16_34318_-22950). 
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or the last subset, in case less than N points are remaining, addi- 

ional points are sampled from the other subsets. Each subset de- 

nes an instance an is segmented independently using the trained 

odel; the results are then combined. 

The model is trained by minimizing the cross-entropy loss; to 

eal with heavy class imbalance, following in similar works [16] , 

he loss is weighted differently for each class, according to inverse- 

quare-root frequency. A training batch is composed by 64 in- 

tances and we train for 200 epochs; we do not use early stop- 

ing but snapshot the model which yields the minimum loss on 

he validation set (which is defined on tiles different than training 

nd testing tiles, see below). Other hyper-parameters are set as in 

33] . The experiments are run on a NVIDIA RTX 2080Ti GPU. The 

ongest train and test sessions are completed in less than 6 hours. 

.2. Experimental setup 

Our experimental setup focuses on the following research ques- 

ions, that are more related to the characteristics of the data than 

o the capabilities of the specific model. 

• Which categories are more challenging to segment? 
• How does the model generalize across cities? 
• How much can additional data help even if it is from a different 

city? 
• Which training strategy is better for pointcloud data: an en- 

semble of per-city models or a single model trained on all data 

from multiple cities? 

To answer the questions above, we train four models: three on 

ata sampled from a single city (named single-city models in the 

ollowing); one on data from all three cities. Then, we apply each 

odel on three testing sets (disjoint from the training and valida- 

ion sets), one per city. 

Data Splits 

We consider five tiles for each of the three cities. Each tile cov- 

rs approximately 0 . 17 km 

2 , which yields 0 . 855 km 

2 and 70 million 

oints per city. 

For each city, the five tiles are partitioned in three tiles for 

raining, one tile for validation and one tile for testing. Single-city 

odels are therefore trained on three tiles and validated on one 

ile. The model trained on all cities is trained on nine tiles and 

alidated on three tiles. Each of the four models is tested on three 
111 
iles (one per city), on which we separately compute performance 

etrics. 

Evaluation Metrics For a testing tile, a model produces five class 

robabilities (which sum to 1) for each point. The point is then 

ssigned to the class that has the largest probability. From these 

ata, we compute the following commonly-used metrics [1,3,12] to 

uantify segmentation performance. 

Overall Accuracy is the fraction of the points for which the pre- 

icted class coincides with the ground truth class (also known as 

icro-averaged accuracy). 

Weighted Accuracy is the macro-averaged accuracy that is multi- 

lied with a per-class factor. For a given class c, the factor is com- 

uted as the proportion of the number of class samples N c over 

he number of samples in the whole dataset N, i.e. N c /N. 

Per-class F1 score is the harmonic mean between per-class pre- 

ision and recall. An F1 score of 1.0 indicates an ideal classifier. 

Per-class Intersection over Union score (IoU): For a given class c, 

he IoU score is computed as the ratio between: the number of 

oints that have been classified as class c AND are indeed of class 

(intersection); and the number of points have been classified as 

lass c OR are indeed of class c (union). An IoU score of 1.0 indi- 

ates an ideal classifier. 

For all per-class metrics, we also report average values among 

ll the classes and the weighted averages. For consistency, we re- 

ort all the metrics as percentage values (the ratios between 0 and 

 are scaled linearly between 0 and 100). 

. Results and discussion 

.1. Overall performance metrics 

On the three testing tiles, the model trained on all cities yields 

n overall accuracy of 82.8%, average F1 of 56.0%, and average IoU 

core of 45.3%. 

.2. Per-category performance 

Table 2 reports, for each city and for each class, the perfor- 

ance of the model trained on data from all cities; namely, we 

eport the per-class F1 score and IoU metrics. 

We observe that “urban asset” and “vehicle” classes are harder 

o segment compared to other classes; this is expected due to their 

mall size, and widely variable characteristics in terms of shape 
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Table 2 

Per-class performance metrics for the model trained on all cities, when evaluated on one testing tile for each city (rows). The metrics are presented as percentage values. 

Terrain Construction Urban asset Vegetation Vehicle 

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 

Davos 66.6 80.0 69.7 82.1 4.2 8.0 80.7 89.3 13.1 23.2 

Zug 75.7 86.2 71.0 83.0 2.8 5.5 62.6 77.0 17.0 29.0 

Zurich 48.3 65.2 81.2 89.6 5.0 9.4 58.3 73.6 24.0 38.8 

Average 63.5 77.1 74.0 85.0 4.0 7.6 67.2 80.0 18.0 30.3 

Fig. 3. (a) The RGB visualization, (b) semantic predictions with the full model, and (c) the groundtruth of a part of PC 5 from Davos; (d) the RGB visualization, (e) semantic 

predictions with the full model, and (f) the groundtruth of a part of PC 15 from Zurich. Legend: blue: terrain, orange: construction, green: vegetation, purple: vehicle, pink: 

urban asset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. The weighted accuracy (left) and the average IoU (right) for different models 

and model ensembles (rows) evaluated on different cities (columns). We consider: 

three models trained on data from each city independently; one model trained on 

data from all three cities; three ensembles of pairs of single-city models; one en- 

semble of three single-city models. 

Fig. 5. The weighted accuracy (left) and average IoU (right) for the models and 

ensembles (bars) trained on the same or different cities. 

t

p

d

t

Z

o

nd color. IoU metrics are particularly penalized, due to the small 

ize of each object. 

Fig. 3 illustrates qualitative results of the full model for two test 

egions (a rural region from PC 5 in Davos and an urban region 

rom PC 15 in Zurich). The following confusion cases are observed 

mong categories: 1) urban asset and other categories (especially 

onstruction), 2) vegetation and terrain, and 3) vehicle and con- 

truction categories. 

We hypothesize that a data pipeline that emphasizes the rel- 

tive height information and favors the small categories in a 

tronger fashion than our current setting (e.g. a cube-based sam- 

ling rather than column-based sampling) and a stronger model 

han PointNet++ might help decreasing these confusion cases. As 

ur goal is to report a baseline model on our novel dataset, we 

eep these model explorations for future work. 

.3. Model generalization across cities 

We analyze the model generalization in a cross-city experiment 

etting. Fig. 4 reports performance metrics for different models, 

valuated separately for each of the three cities. As seen in the 

rst two rows and last column, the performance of the M1 and M2 

odels, which were trained on rural or industrial areas in Davos 

nd Zug, decreases when they are tested on the urban Zurich test 

ile. Similarly, the Zurich model (M3), which is trained with the 

rban pointclouds, i.e. high-rise large buildings, performs worse on 

he rural Davos test tile (see third row, first column) than the other 

est tiles. This trend is observed further in the ensemble results. 

his point emphasizes the importance of area characteristics while 

earning semantics. 

Fig. 5 summarizes the same data by reporting the average per- 

ormance of models depending on whether they are trained on the 

ame or different cities. For example, the performance of models 
112 
rained on a city different than the testing city (first bar) is com- 

uted as the average of six performance values: two values pre- 

icted by the Davos model (M1) on the Zug and Zurich test tiles; 

wo values predicted by the Zug model (M2) on the Davos and 

urich test tiles; two values predicted by the Zurich model (M3) 

n Davos and Zug test tiles. 
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Comparing the first and second bar of Fig. 5 , we observe that 

he models trained on data from the same city have significantly 

etter performance (average weighted accuracy 84.9%) than the 

odels trained on data from a different city (average weighted ac- 

uracy 82.3%), despite the fact that the amount of training data is 

he same in different cities, and that areas used for training are 

lways disjoint from areas used for testing. 

.4. Impact of data scale 

Comparing the second and third bar of Fig. 5 , we observe that 

he performance of the model M4 trained on data from all three 

ities (average weighted accuracy 87.6%) is better than the per- 

ormance of the model trained just on data from the same city 

average weighted accuracy 84.9%). This quantifies the impact of 

ripling the amount of training data, even though the additional 

ata comes from two different cities. 

.5. Model ensembling 

We consider an alternative approach to training a single model 

n three cities; instead, we consider the three single-city models 

M1, M2, and M3), apply each model independently to each test 

ile, then average their predictions; in particular, for each given 

oint in the test tile, we obtain three class probability vectors as 

utputs of each of the three models; we compute the element-by- 

lement average of the three vectors, which yields a single class 

robability vector whose 5 elements also sum to 1. This approach 

s known as model ensembling [7,13] and is used frequently in ma- 

hine learning. 

Comparing the third and sixth bar of Fig. 5 , we observe that 

he ensemble of the three single-city models outperforms the sin- 

le model trained on the three cities. The ensembling approach 

s appealing, since training each model on a single-city dataset is 

imple and flexible: by averaging their results, we minimize the 

onsequences of overfitting and more generally counteract model 

ariance; on the other hand, the computational cost for inference 

s tripled, as three models have to be evaluated for each input. 

Model ensembling experiments also allow us to quantify the 

erformance gains from acquiring additional training data; in par- 

icular, by comparing the first and fourth bar of Fig. 5 , we can

bserve the benefits of building an ensemble by adding a model 

rained on a different city; the sixth bar shows additional improve- 

ents when adding a third model to the ensemble. 

. Conclusion 

This paper introduces a novel urban pointcloud dataset with 

ointwise semantic groundtruth. The dataset is constructed via 

hotogrammetry on UAV-acquired high-resolution images of three 

wiss cities. The dataset reports three pointcloud densities: a 

parse pointcloud with RGB colors and semantic labels, a regu- 

ar density pointcloud with RGB colors and semantic labels, and 

 dense pointcloud with only x,y,z coordinates. 

The paper describes the acquisition and processing of the 

ataset, then illustrates several experiments on a semantic seg- 

entation task with a prominent point-based deep learning 

enchmark model (PointNet++ [24] ). These experiments highlight: 

) the importance of the amount of training data; 2) the advantage 

f using training data from the same city on which the model is 

valuated; 3) the viability of simple model ensembling approaches. 

As future work, we plan to compare additional recent deep- 

earning models for the semantic segmentation task on this 

ataset. Moreover, we plan to study the effects of semi-supervised 

nd self-supervised learning methods on unstructured pointclouds. 
113 
As we make this dataset available to the research community, 

e hope that it will be useful for further analysis of model gener- 

lization, domain-gap studies with respect to LiDAR datasets, and 

arious robotics applications such as traversibility, and ultimately 

dvance the state of the art in the field. 
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