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A service robot can provide a smoother interaction experience if it has the ability to proactively detect whether
a nearby user intends to interact, in order to adapt its behavior e.g. by explicitly showing that it is available to
provide a service. In this work, we propose a learning-based approach to predict the probability that a human
user will interact with a robot before the interaction actually begins; the approach is self-supervised because
after each encounter with a human, the robot can automatically label it depending on whether it resulted in an
interaction or not. We explore different classification approaches, using different sets of features considering
the pose and the motion of the user. We validate and deploy the approach in three scenarios. The first collects
3442 natural sequences (both interacting and non-interacting) representing employees in an office break area:
a real-world, challenging setting, where we consider a coffee machine in place of a service robot. The other two
scenarios represent researchers interacting with service robots (200 and 72 sequences, respectively). Results
show that, even in challenging real-world settings, our approach can learn without external supervision, and
can achieve accurate classification (i.e. AUROC greater than 0.9) of the user’s intention to interact with an
advance of more than 3 s before the interaction actually occurs.

1. Introduction

Many emerging applications of robots have the potential of assisting
humans in everyday life tasks or automating jobs in the future [1].
Examples include social robots offering assistance at receptions [2], in
hospitality sectors [3] or at home [4]; navigation guidance in public
spaces [5] or personal care [6]; and object delivery [7]. In such
situations, robots should automatically understand the human intention
to interact well before the interaction starts to be more proactive and
offer relevant services.

The very initial phase of these interactions plays an important role
in establishing an effective Human-Robot Interaction (HRI), in which
the user first sees the robot and decides to approach and engage with
it. When users are unfamiliar with the situation, e.g., because they enter
a new environment and are unsure about the right action to take, the
robot’s behavior is crucial to determine if this approach phase yields a
successful interaction and a good user experience [8].

Consider the everyday-life scenario of a skilled human receptionist
operating in a bustling lobby. They can anticipate the arrival of a client
detecting cues in the client’s movement and body language well before
they reach the reception desk. In these circumstances, the receptionist
welcomes the client without being distracted by other nearby people
who are not interested in interacting. This behavior makes it clear to
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the client that the receptionist is indeed available for interaction and is
the right person to approach for assistance. Albeit it might just appear
as a pleasant but superfluous detail for a client who already knows what
to do, this subtle behavior of the receptionist can reassure novel users
who might be intimidated or confused in an unfamiliar situation.

To enable the widespread deployment and social acceptance of
robots in everyday life scenarios (see Fig. 1), they must develop similar
skills, namely, anticipate and adapt to human intentions. Indeed, an
effective service robot should have the following skills: (i) keeping track
of nearby people; (ii) predicting when an approaching person intends
to interact with it; and (iii) reacting accordingly. In this paper, we use
off-the-shelf tools to solve the first point and focus our contribution on
the second skill, which is general and mostly independent of the type
of robot. Once the intention of the user has been detected, reaction
strategies can be designed according to the specific robot hardware and
sensory equipment.

Our primary contribution is a learning-based method that enables
the robot to classify whether each tracked person intends to interact
with it or not. As input, we use body motion cues that are provided by
off-the-shelf video or RGB-D sensing subsystems. The probability that
the person will interact is updated in real-time and can trigger a reac-
tion of the robot when exceeding a threshold. Eventually, each tracked
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Fig. 1. For a robot providing information in a corridor of a public building (top) or
serving a chocolate treat to a passerby (bottom), it is crucial to proactively detect
the human intention to interact even when the user is still at a distance, in order to
adopt behaviors perceived as friendly, demonstrate availability to interact, and more
efficiently offer the relevant services.

person either interacts with the robot, or leaves without interacting;
the corresponding data sequences, considered with hindsight, provide
additional training data that the robot collects without the need for
manual labeling, or any other form of external supervision. Variations
of this concept have been known and applied in various fields of
robotics research since the mid-2000s [9-20], denoted with the term
self-supervised learning, which highlights that the robot autonomously
generates labeled data for the task of interest.

The remainder of the paper is organized as follows. After reviewing
related work (Section 2), we describe our approach (Section 3) and
its implementation (Section 4); experimental results are presented in
Section 5. We finally derive our conclusions in Section 6, discussing
future work directions.

2. Related work

Nonverbal communication cues [21], such as body motion and
language, play a central role in HRI, from both users’ and robots’
perspective [22,23]. However, the perception of social nonverbal be-
haviors is a challenging task to solve in HRI [24], especially for the first
phases of the interactions [8]. Nonetheless, it is important to be able
to predict the intention to interact with the robot so that an effective
reaction strategy can be well accommodated to the users’ needs. For
example, human intention navigation is inferred using motion fea-
tures [25]. In the context of collaborative tasks, the human intention
is estimated from gaze and motion features in virtual reality [26] or
analyzing the motion performed in front of a humanoid robot [27].
In these cited works, the intention of the human is intended to be
related to the next action to take in the context of an ongoing activity.
Similarly, other systems based on body motion cues are used to classify
the social behavior of humans standing in the robot’s proximity [28,
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29]. In our work, instead, we aim at predicting the human intent
well before the interaction actually starts. The intention to interact
based on gaze and body motion has also been proposed as a tool to
evaluate the engagement of a user standing in front of a system at
a fixed distance [30]. Our work focuses on a more general scenario
since we want to predict the intention of any users free to move into
social spaces. It is worth mentioning that a significant body of work
bases the intention recognition only on gaze cues, as can be found in
a recent review [31]. However, our work aims at predicting human
intention from far distances, where the performances of gaze trackers
are expected to decrease. Our work is more similar to approaches using
multi-modal features, including body motion, to train a binary classifier
predicting users’ intention to interact [32-34] or to assess the intensity
of human engagement intention [35]. These works rely on hand-labeled
datasets collected in controlled environments, which are expensive,
and sometimes unfeasible, to acquire for each deployment scenario. In
contrast, our approach is self-supervised, as discussed below.

In a standard supervised paradigm, one would need to collect large
training datasets composed of a large number of tracks representing a
given human in the robot’s vicinity, and manually provide labels assign-
ing a class to every track depending on whether the human interacts
with the robot or not. In contrast, our work relies on the robot’s ability
to reconsider its experience in hindsight, and automatically assign
a label to each recorded track, depending on whether it eventually
resulted in an interaction with the robot or not. This is a form of
self-supervised robot learning, that derives labels from data available to
the robot only after the sample was observed; robots capable of self-
supervised learning rely on data collected in previous experiences by
their own sensors in order to self-generate meaningful supervision, a
paradigm initially adopted in robotics for segmentation of traversable
terrain [9-11], then applied to other tasks such as grasping [12-14]
and long-range sensing for navigation [15-20]. It is worth noting that
in the recent deep learning literature, the term “self-supervised” has a
different meaning: it denotes the practice of using pretext tasks [36—
38] for learning useful data representations [39] from large amounts
of unlabeled data.

One of the advantages of Self-Supervised Learning (SSL) approaches
is that they allow the system to continuously update its models with
new training data acquired on the spot. This is especially valuable in
our scenario, as the robot can use these data to learn human behavior
cues that are specific to its deployment environment. A related but
different field of research is continual learning [40], which provides
methods to efficiently adapt models as new training data becomes
available, without having to store the entire training dataset and avoid-
ing the problem of catastrophic forgetting. In our work, we adopt a
simpler approach: we store the entire dataset and retrain the model
from scratch, without resorting to continual learning techniques.

3. Approach
3.1. Problem formulation

We consider a robot standing in an environment shared with hu-
mans, some of which might approach the robot in order to engage
with it. The robot is equipped with sensors capable to detect and
track people at least within a distance of 4 m, i.e. the robot’s social
space [24,41], but possibly beyond. During normal operation, people
routinely pass nearby the robot, entering and exiting the robot’s social
space; occasionally, some users engage with the robot.

We define 7, as a fixed frame centered on the robot. For each
tracked person, the robot is capable to estimate the pose of their torso
(F,) and head (F,) frames. In particular, we denote as p, € R? and
0, the planar position and orientation of 7, w.r.t. F,, respectively.
The distance of the person from the robot is d = ||p,||. Similarly, 6,
indicates the orientation of 7, in F, around the vertical axis. Finally,
the variable v, € R? indicates the person’s linear velocity. Note that
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the position and orientation of a person’s torso w.r.t 7, and its velocity
are informative of their proxemics [23] and are also useful to determine
which proxemic zone [24,41] they occupy. The head orientation is also
indicative of the user’s gaze and is expected to be informative of their
intention.

We tackle the problem of predicting the intention of a person to
interact with the robot, as soon as possible before the interaction be-
gins. To this end, we make use of information captured about possible
interacting people, elaborated by different classifier architectures, as
described in the following.

3.2. Sensing and features

In our study, we make use of the proxemics, i.e. the analysis of
motion cues of interacting users. More into detail, proxemics analyses
the way a user uses or occupies the social space in order to infer
useful information for the interaction [23]. Proxemics concepts are
particularly suitable to our scope as (i) they are very representative
of the intention to interact and (ii) the quantities that define them
can be conveniently measured with state-of-the-art robotic sensors.
In particular, the RGB-D sensor used for data collection is the Azure
Kinect [42]. The SDK of this sensor provides the detection and tracking
of the human skeletons appearing in its field of view. More into detail,
each detected skeleton is given an ID and defined as a tree of frames
along the kinematic structures of the user. From the spatial information
of the skeleton, the motion of the user can be easily extracted and
used for our intention prediction module. Such data is saved in an
anonymous way, i.e.,, no RGB-D images are stored: only the metric
information required by the classifier is logged.

For our analysis, we take into account different sets of features. First
of all, we consider the distance or the orientation of the person’s torso:

T 2
fi=d. and f2=<sin9,,cost9,) 3:3 ¢))

where, according to machine learning best practices [43], we encode
the torso orientation into its sin and cos functions, to account for the
fact that the feature is cyclical, and thus the representation of angle 0°
should be close to 359°. The third set that we consider contains the
torso position:

fi=p eR% )

The fourth set of features gathers torso position and orientation to-
gether:

fa4= (pz—,sin 0,,cos 9,)T eRr* 3)
In the fifth set, we also include the orientation of the head:
[5= <p;r,sinH,,COSG,,sin&h,cosé’h)T e R° 4)
and in the last one, we add the velocity of the torso as well:

.
fo= (ptT,sin@,,cosH,,sineh,cosﬁh,v,T> e RS, 5)

The sets of features include the notions of proxemics at different
levels. Their comparison allows for analyzing the contribution of the
different proxemics elements in the prediction of the interaction.

3.3. Classification approach

To solve the problem, we train a binary classifier that takes as input
a feature vector describing a tracked person at a given time and outputs
the probability that the person will interact with the robot.

The classifier is trained on a dataset D composed of several se-
quences. A sequence represents a person tracked by the robot over time
and is composed of multiple samples (one per timestep). The sequence
begins when the person enters the robot’s social space and is first seen
by the sensor; it ends when the person either begins their interaction
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Fig. 2. To collect data, the motion of people walking in a break area is monitored to
predict their intention to interact with a coffee machine.

with the robot or exits the social space of the robot without interacting.
The dataset is denoted as
N;.S

b= {fi’j’ Vi }izl,jzl ©®
where f is the feature vector, and y the label; the subscripts i and
j indicate the ith sample of the jth sequence, respectively; S is the
number of sequences, whereas N; is the number of samples contained
in the jth sequence. For a given sequence j, all labels y, ; are the same:
0 if the person did not interact with the robot; 1 if they did.

Assuming that the robot has the ability to detect that the user
has engaged in an interaction, the true label of a sequence becomes
available as soon as the sequence ends. This enables the robot to
grow its training dataset without external supervision and to iteratively
improve the classifier performance in a self-supervised way.

From an implementation point of view, we investigate different
classifiers: Logistic Classifier (LC), Random Forest (RF), and Multilayer
Perceptron (MLP) using their implementation provided by the scikit-
learn library [44]; and Long Short-Term Memory (LSTM) which is im-
plemented using PyTorch [45]. The MLP is composed of 2 hidden layers
with 30 neurons each, using sigmoid activations; the LSTM is composed
of 2 long short-term memory [46] cells with a 10-dimensional hidden
state each; both models have approximately 1500 trainable parameters.

It is worth noting that the input of the classifier is limited to the
information related to a single subject, i.e., the one whose intention
to interact is being classified, whereas it does not include information
about other people. However, during both training and inference, the
presence of multiple people is easily handled by our approach since
each person is tracked and processed independently. Since the classifier
is computationally light (i.e. on a standard laptop, it runs at 30 FPS,
which is the sensor’s maximum frame rate) and can be instantiated in
parallel for several users, we actually handle multi-user prediction by
tracking and classifying all the people appearing in the field of view of
the sensor (see Section 5.2).

4. Experimental scenarios

We test our approach in different scenarios, presented in Table 1
and described in detail in the following.

4.1. Real-world interactions at a coffee break area
We collect a real-world, challenging dataset of human-machine in-

teractions in which humans behave naturally. In particular, we consider
a coffee machine placed in a break area neighboring a corridor of an
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Table 1
Scenarios considered in our analysis.

Scenario Setting User Agent Self Sequences Mode  Agent
labeling number behavior
Coffee . Coffee  Distance High Train .
break In-the-wild Unaware machine based (3422) & Test Fassive
Waiter Controlled  Act Robo- Vision  Medium  Train Reacti
robot ontrotle ctor master  based (200) & Test eactive
Info Controlled Actor HSR-B  Touch  Low Test Passive

robot robot based (72)

office building (Fig. 2). During the day, many people pass through
the corridor, some of them stop in the break area, and some others
approach the machine to have a coffee. This scenario is interesting and
convenient for our analysis as we can observe the spontaneous behavior
of the users who plan to interact with the coffee machine, in a natural
context with many challenging complications and distractors: other
users hanging around chatting; users approaching the general area to
reach a nearby tap or fridge; users queuing up to use the machine.
In this scenario, we have collected 3422 unique sequences of tracked
skeletons, accounting for more than 12 h of recorded data. Recorded
users come from a heterogeneous sample of people, mainly employees
and guests who have access to the break area. The users are informed
about the presence of the sensor above the coffee machine. However,
they are unaware of the scope of the data collection. In this way, we
ensure that their behavior is as natural as possible. Non-sensitive data
(i.e. only the skeletons of the users) are recorded.

In this specific scenario, sequences should be ideally labeled by con-
sidering when a user operates the machine, e.g. by pressing a button on
it; similarly one might expect a service robot to easily determine when
a user engages with it. However, in our case, we do not have access to
the machine firmware and we cannot read its internal state. Therefore,
we rely on the sensor used for data collection to automatically gen-
erate labels. To do so, we use the following distance-based heuristic:
interaction is detected when a person stays very close (i.e. within a
distance of 1 m) to the coffee machine for an uninterrupted period of 5
seconds; we assume that the interaction takes place at the end of this
period; all samples, coming from the same sequence, in the preceding
10 seconds are labeled y = 1. We empirically verified that such criterion
is very effective as a proxy to detect actual interactions, and we use it
to automatically generate labels in this scenario.

4.2. Chocolate handover by a waiter robot

In the second scenario, we use a wheeled omnidirectional robot (DJI
Robomaster EP [47]), placed on a table in the vicinity of the Azure
Kinect [42] sensor (Fig. 1, bottom). The robot behaves as a waiter who
serves chocolate treats to people passing by. During the data collection,
the robot does not perform any motion. Data can be self-labeled using
a simple vision-based approach based on image-based detections taken
with the robot’s onboard camera with which we can automatically
detect whether users take the chocolate or not. The recorded data
consists of 200 sequences of a single user performing the same number
of interacting and non-interacting actions.

In the deployment phase, instead, we provide the robot with reac-
tive behavior. If an interaction is predicted, the robot enacts a reaction
by turning its LEDs on and orienting itself towards the user yielding
the highest probability. At the same time, the robot extends its arm
handing out a chocolate treat to the user: this acknowledges that the
robot has seen the user and is available to interact. When no interaction
is predicted, the robot gets back to its initial orientation, turns the LEDs
off, and retracts its arm. Such behavior has been tested with users aware
of the interactions in a controlled environment. The users of these tests
were informed about the purpose of the experiments and gave their
consent to participate in the data collection.
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Finally, we propose a controlled evaluation setup with the Toyota
Human Support Robot series B (HSR-B) [48] robot placed in a U-
shaped corridor (see Fig. 1, top). The robot is equipped with the Azure
Kinect sensor on its head, oriented horizontally w.r.t. the floor, at a
height of about 1.3 m. We have collected evaluation data from the
behavior of 12 participants. The participants who walk through the
corridor, initially cannot see the robot, after the first curve notice it,
and adjust their behavior according to their intention to interact. In
this specific data collection setup, participants act as actors, i.e., they
are informed of the presence of the robot. Furthermore, in half of the
cases, they are told to pretend that they do not wish to or do not
have time to interact with the robot. In this way, they provide non-
interaction sequences for our dataset. In the other half of the cases,
participants are instructed to walk to the robot when they see it and
touch its head, which we considered the interaction trigger for this
evaluation scenario. Each test participant produced 3 samples of not
interacting with the robot, and 3 that recorded interaction, resulting in
a total of 72 samples. The data collection protocol was approved by the
Ethical Committee of King’s College London, United Kingdom (Review
reference: LRS/DP-22/23-35586).

5. Results

We report the experimental analysis carried out in each scenario
described in Section 4. First, we perform offline experiments on the
large and challenging coffee break dataset presented in Section 4.1,
comparing different feature sets and classification approaches. Based
on these experiment results, we then select the most promising combi-
nation of features and classifier for the experimental validation within
the other two scenarios that involve actual robots. The presented results
can be further qualitatively evaluated in the video accompanying the
paper.

5.1. Offline experiment in the coffee break scenario

5.1.1. Sample-level performance

We compare different feature sets (Section 3.2) and classification
approaches (Section 3.3) using the dataset collected in the coffee break
scenario. We partition the set of the recorded sequences into 5 evenly-
sized non-overlapping groups. Then, for each combination of feature
set and classifier, we use a 5-fold cross-validation approach to compute
predictions for all the samples in all the sequences. In particular, the
samples in all the sequences of a given group are classified by a model
trained on all sequences belonging to the 4 remaining groups.

We then consider all samples from all sequences to compute perfor-
mance metrics. In particular, we report the Area Under the ROC Curve
(AUROQ): a robust binary classification metric that does not depend on
a choice of threshold, and ranges between 0.5 (for a non-informative
classifier, e.g. one always reporting the majority class) and 1.0 (an ideal
classifier). It can be interpreted as the probability that, taking a random
sample from a person who did not interact, and a random sample from
a person who eventually interacted, the classifier assigns to the former
a lower score than the latter. When computed on all testing samples
pooled together, all models score very high when using feature sets that
include the distance-based information (see Table 2). The reason is that
the person’s distance from the device is a very strong cue of whether
the person ends up interacting with it.

However, we aim to evaluate the ability of our approach to classify
a person’s intention to interact independently on their distance from
the device. A more informative metric in our context is therefore the
AUROC computed among samples that all lie approximately at the same
distance; within this group of samples, the distance feature alone loses
its discriminative ability. Thus, we partition all our testing samples in
seven distance bins, determined in such a way to have an approximately
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Fig. 3. Coffee break scenario: performance of the classifiers according to the AUROC metric for the different models (from top to bottom: LC, RF, MLP, and LSTM); tested in
different ranges of distance (from left to right, ranging from below 0.75 m to above 3.5 m) and on average over all the distance ranges (last column); and using different sets of
features (from f, to f for each column of the histograms from left to right). The horizontal dotted line denotes the performance of a noninformative classifier (AUROC = 0.5).

Table 2
AUROC for different classifiers (rows) and feature sets (columns) tested on all samples
pooled together (i.e., without distance-based binning).

S f2 1B f4 fs fs
LC 0.909 0.663 0.897 0.901 0.901 0.906
RF 0.838 0.559 0.872 0.896 0.905 0.931
MLP 0.908 0.666 0.914 0.925 0.921 0.940
LSTM 0.919 0.659 0.894 0.906 0.895 0.913

uniform amount of samples per bin: d < 0.75 m, d € [0.75,1) m,
de[l,125) m,d € [1.25,2) m, d € [2,25) m, d € [2.5,3) m, and d >
3 m; this yields 7 AUROC values for each model, each representing its
performance on people in a given distance bin; we then average these
values together to get an overall metric describing how good a model is
to determine user’s intention, independently of their distance from the
machine. Fig. 3 reports this metric, separately for each distance bin,
and averaged over all the distances. We observe that:

+ As expected, in non-recurrent models (LC, RF, MLP), f, alone is
not informative according to the chosen metric (the AUROC is
always close to 0.5).

Consistently over all the models and distances, richer features
yield better results.

The LSTM model does not benefit when provided with explicit
velocity information, since this can be already captured by the
model itself, which operates on sequential data. For the same rea-
son, the LSTM model performs significantly better than chance,
even when given only the distance feature as input, since it can
capture and exploit distance variations over time.

When the models are provided with rich features, predicting per-
formance at short distances is harder (lower AUROC) than at long
distances. This can be explained considering the characteristics
of our dataset: people in the vicinity of the device often mingle
around it for a long time, chatting with others or being busy
with other tasks, even if they do not end up interacting with
the machine; people that are approaching from afar, in contrast,
exhibit clearer intention in their body language and gaze; this

also explains why, for people that lie far from the device, pro-
viding orientation and velocity information is very beneficial to
performance, whereas the same does not hold for people nearby.

5.1.2. Sequence-level performance

While sample-level performance is a relevant metric to robustly
compare different classification approaches, in a real deployment we
care about the ability of the approach to correctly classify the intent of
a nearby person, as early as possible after the person is first detected.
Therefore, we now limit our analysis to the LSTM approach using
the f5 set, which shows the most promising performances for higher
distances with no need to explicitly encode velocity features. We report
sequence-level metrics, computed as follows.

We consider each sequence in the testing set separately; we evalu-
ate every sample in the sequence and simulate taking an irreversible
decision (e.g. to acknowledge the person’s presence and demonstrate
availability to interact) as soon as the probability returned by the clas-
sifier exceeds a given threshold. A sequence for which such probability
never exceeds the threshold is a true negative if the user does not interact
with the robot, or a false negative if it eventually does. A sequence for
which such probability exceeds the threshold for at least one sample
is a true positive if the person eventually interacts, or a false positive
otherwise. Then, we can compute the true positive rate (i.e., the recall),
false positive rate, and precision. For true positives, we also track the
advance detection time: the period (in seconds) between the first time
the probability exceeds the threshold and the moment in which the
interaction actually occurs.

Fig. 4 reports how these metrics change as a function of the thresh-
old. We observe that the resulting AUROC is well above 0.5, indicating
a good ability of the approach to discriminate sequences that eventually
interact from those that do not; as the threshold increases, the advance
detection time (averaged over true positives) decreases, as the system
takes a decision later in the sequence, i.e., when the person is closer to
the robot.
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Fig. 4. Coffee break scenario: ROC curve for sequence-level performance (left);
Precision, Recall, and Advance detection time w.r.t the threshold of the classifier (right).

5.1.3. Self-supervised learning

We test the ability of the system to improve its performance as new
training data is collected in a self-supervised way [14,40]. In partic-
ular, we split the collected sequences into 10 disjoint, equally-sized,
temporally-contiguous groups. Each group has about 340 sequences and
we refer to it in the following as a “day” of data, assuming that the
robot is placed in an area with limited visitors. A crowded hall might
see the same number of sequences in one hour or less. We then consider
a setting in which the robot is deployed with no training at day 0:
the robot collects data for one day, then trains a new model using all
collected data up to that day, which will be used and evaluated in the
following day; the process is repeated for a total of 10 days.

Fig. 5 reports the improvements in the performance measured over
the considered period; statistics are reported over 20 runs of the ex-
periment, obtained by randomly shuffling the order of the days. For
each run, we take the average AUROC computed over each distance
bin independently as explained in 5.1.1. We observe that median per-
formance steeply increases in the first 4 days (about 1500 sequences);
additional training further improves AUROC, with reduced returns.
Note that, although we did not test this in our current experiment,
this approach would be able to automatically adapt to domain shift
over time, i.e. caused by changing user demographics, or changing the
spatial layout of the environment.

5.2. Robot validation experiments

5.2.1. Self-supervised learning on the waiter robot

We leverage the self-supervised nature of the dataset collected as
described in Section 4.2 to implement the behavior of the waiter robot.
Similarly to the coffee break scenario, we split the available data in 3
“days” and assume that each one of them is incrementally added to
the dataset as time goes by. At day O the robot starts without actual
training and passively collects data. Each day, new data is recorded and
a new model is trained using k-fold cross-validation, where k equals
the number of available days of data. We then compute AUROCs for
each model and we observe the performance incrementally increasing
from 0.500 on day 0, to 0.871 on day 1 and 0.927 on day 2. On day
3, the robot becomes very confident about its prediction as the model
yields an AUROC of 0.944. At this point, the robot can start enacting
the reaction strategy described in Section 4.2.

The qualitative performance of the model can be observed in Fig. 6
and the supplementary video. Our perception module correctly detects
whether someone is approaching the robot to take the chocolate, or is
simply passing nearby the robot. This behavior would not be possible
to realize if the model used distance-based features only. Furthermore,
the model works with multiple users at the same time. In this case,
the robot shows availability to interact with the closest user whose
intention to interact is predicted.
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Fig. 5. Coffee break scenario: AUROC of the model on each day of the self-supervised
learning experiment (see text). Boxplots report statistics over 20 runs of the experiment.

5.2.2. Performance in the information robot scenario

Finally, we consider the classifier learned in the waiter robot sce-
nario, and test it in a new setting with different users. In particular, we
compute the performance of such a classifier on the dataset collected
in the information robot scenario. Fig. 7 reports solid sequence-based
metrics: AUROC is approximately equal to 0.99; also, for a threshold
of about 0.86 we get a recall of 1, and a precision of about 0.90,
maintaining an average advance detection time of more than 3 s, which
is a reasonable prediction time for the considered scenario.

A qualitative evaluation of the performance is shown in Fig. 8 and
the supplementary video.

5.3. Discussion

The results obtained in the three scenarios illustrate that the pro-
posed approach works well to detect users’ intention to interact before
the interaction actually happens. The robot validation experiments
exhibit better performance than the experiments in the coffee break
scenario: in fact, the former is a controlled environment with users
that were specifically tasked to interact with the robot; the latter relies
on a more challenging dataset collected in the wild. Nevertheless, the
AUROC value computed for the sequence-based analysis in the coffee
break scenario confirms the reliability of the approach.

The advance detection time, which is always >3 s, demonstrates that
the approach works well in practice. In fact, considering an average
human walking speed of 1.35 m/s [49], we can argue that we are
able to predict the intention of an approaching person and proactively
anticipate them to successfully start an interaction. This intuition is ex-
tensively verified in the attached video, where the classifier evaluated
in Sections 5.2.1 and 5.2.2 is successfully deployed. In the video, we
try to challenge the classifier, recording difficult sequences in which
people approach the robot just to pass by it without interacting. In
these circumstances, the use of only distance-based features would not
be sufficient to correctly classify the user’s intention to interact. Indeed
in the recorded sequences, our classifier that makes use of a rich feature
set (f5 in the presented experiments) manages to successfully detect the
user’s intentions.

Furthermore, the SSL experiments advocate for the practical use of
the proposed approach. Starting from the realistic assumption that a
robot can easily determine whether a person has interacted with it
(e.g. by pressing a button, or starting a conversation), the results shown
in Sections 5.1.3 and 5.2.1 demonstrate how a robot could be deployed
in an unknown environment. Most importantly, during the deployment,
the robot can autonomously collect new data, improve its predictions,
and start to proactively engage people in interactions.

Moreover, the choice of using only spatial-based features extracted
from the skeleton of the user, avoiding RGB-D data, proved to be
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Fig. 6. Waiter robot scenario: deployment of the classifier. If no interaction is predicted (snapshots on the left) the robot does not react at all. If a user is classified as intending
to interact (center), the robot orients its body towards them, turns its LEDs on, and extends its arm to hand out a chocolate treat. When multiple users are detected (right) the

robot orients itself towards the closest person that is predicted as intending to interact.
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Fig. 7. Information robot scenario: ROC curve for sequence-level performance (left);
Precision, Recall, and Advance detection time w.r.t the threshold of the classifier (right).

ideal to make the approach more robust and general. Indeed, using
skeleton-derived data as features allows us to be independent of the
users’ appearance and more robust w.r.t. to the scene background. In
fact, we have obtained strong performances with the classifier trained
in the waiter robot scenario even when deployed in a new scenario,
such as the information robot one, without retraining. Both the video
and Fig. 8 showcase this important aspect, displaying sequences from
the robot information scenario and the predictions returned by the
waiter robot classifier. Also, avoiding image based information makes
data collection and processing easier, both in term of computation and
privacy concerns.

Finally, both Fig. 6 and the video show how the approach can
be deployed to handle multiple users. The input to the classifier is
limited to the information related to one single subject (the one whose
intention is actually classified) and does not include information related
to other neighboring persons that might be influencing the subject’s
behavior. However, both during training and inference, the presence
of multiple people is easily handled as each person is tracked and
processed independently. Indeed, in the waiter robot scenario, we
demonstrate that we can handle multiple users and interact with the
closest person who is predicted to interact. The video qualitatively
shows that the robot can proactively behave even when multiple users
are present at the same time.

6. Conclusions

We have presented a self-supervised learning approach to predict
the user’s intention to interact with a robot. To this end, we have
collected three datasets in different interaction contexts and settings,
with different sizes, containing hundreds of body-tracked users inter-
acting with agents, even within real everyday-life scenarios. We have
tested the system with various classification approaches to assess the
relevance of the features containing information on the user’s pose
and motion. We have also simulated the deployment of our strategy
in a self-supervised learning fashion and tested it at both sample
and sequence levels. Furthermore, we have validated our approach in
real human-robot interaction experiments, and involving two different
robot platforms. Finally, we have also shown a strategy to proactively
react to the user’s intention. The presented results are also reported in
the supplementary video.

In the future, we will investigate different robot reaction strategies
and the way they affect the interaction from the users’ perspective.
Similarly, we will analyze how the presence of multiple people influ-
ences the user’s intention to interact. To this end, we plan to augment
the feature set of the classifier with information about the people
neighboring the tracked user. Furthermore, we will also consider the
role played by the robot’s appearance and test our framework with
different robot platforms. Finally, we plan to conduct an extensive
data collection session in public environments and in different social
contexts.
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Fig. 8. Information robot scenario: snapshots taken from the robot’s sensor during two sequences. The bounding boxes that are superimposed on the acquired image report the
output of the classifier: red boxes mean a low probability of interaction, whereas green boxes indicate a higher probability of interaction. Top: a user walks through the corridor
without interacting with the robot; the system does not predict any interaction. Bottom: another user approaches the robot and the system correctly predicts the intention to
interact in advance.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.robot.2023.104568.

References

[1]

[2]

[3]

[4]

[5]

(6]

[71

[8]

[91

[10]

[11]

[12]

[13]

A. Paolillo, F. Colella, N. Nosengo, F. Schiano, W. Stewart, D. Zambrano, I
Chappuis, R. Lalive, D. Floreano, How to compete with robots by assessing
job automation risks and resilient alternatives, Science Robotics 7 (65) (2022)
eabg5561.

M.K. Lee, S. Kiesler, J. Forlizzi, Receptionist or information kiosk: how do people
talk with a robot? in: ACM Conference on Computer Supported Cooperative
Work, 2010, pp. 31-40.

A. Tuomi, L.P. Tussyadiah, J. Stienmetz, Applications and implications of service
robots in hospitality, Cornell Hosp. Q. 62 (2) (2021) 232-247.

G.A. Zachiotis, G. Andrikopoulos, R. Gornez, K. Nakamura, G. Nikolakopoulos,
A survey on the application trends of home service robotics, in: IEEE Int. Conf.
on Robotics and Biomimetics, 2018, pp. 1999-2006.

L. Palopoli, A. Argyros, J. Birchbauer, A. Colombo, D. Fontanelli, A. Legay, A.
Garulli, A. Giannitrapani, D. Macii, F. Moro, et al., Navigation assistance and
guidance of older adults across complex public spaces: the DALi approach, Intell.
Serv. Robot. 8 (2015) 77-92.

J. Miseikis, P. Caroni, P. Duchamp, A. Gasser, R. Marko, N. Miseikiené, F.
Zwilling, C. de Castelbajac, L. Eicher, M. Frith, H. Friih, Lio-a personal robot
assistant for human-robot interaction and care applications, IEEE Robot. Autom.
Lett. 5 (4) (2020) 5339-5346.

D. Lee, G. Kang, B. Kim, D.H. Shim, Assistive delivery robot application for
real-world postal services, IEEE Access 9 (2021) 141981-141998.

J. Avelino, L. Garcia-Marques, R. Ventura, A. Bernardino, Break the ice: a survey
on socially aware engagement for human-robot first encounters, Int. J. Soc.
Robot. 13 (8) (2021) 1851-1877.

H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, G.R. Bradski, Self-supervised
monocular road detection in desert terrain, in: Robotics: Science and Systems,
2006.

D. Stavens, S. Thrun, A self-supervised terrain roughness estimator for off-
road autonomous driving, in: Proceedings of the Twenty-Second Conference on
Uncertainty in Artificial Intelligence, AUAI Press, 2006, pp. 469-476.

A. Lookingbill, J. Rogers, D. Lieb, J. Curry, S. Thrun, Reverse optical flow for
self-supervised adaptive autonomous robot navigation, Int. J. Comput. Vis. 74
(2006) 287-302.

T. Mar, V. Tikhanoff, G. Metta, L. Natale, Self-supervised learning of grasp
dependent tool affordances on the iCub Humanoid robot, in: IEEE Int. Conf.
on Robotics and Automation, 2015, pp. 3200-3206.

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, D. Quillen, Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data
collection, Int. J. Robot. Res. 37 (4-5) (2018) 421-436.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

N. Churamani, S. Kalkan, H. Gunes, Continual learning for affective robotics:
Why, what and how? in: Int. Symp.
Communication, 2020, pp. 425-431.

M. Nava, J. Guzzi, R.O. Chavez-Garcia, L.M. Gambardella, A. Giusti, Learn-
ing long-range perception using self-supervision from short-range sensors and
odometry, IEEE Robot. Autom. Lett. 4 (2) (2019) 1279-1286.

D. Gandhi, L. Pinto, A. Gupta, Learning to fly by crashing, in: IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2017, pp. 3948-3955.

M.A. Bekhti, Y. Kobayashi, K. Matsumura, Terrain traversability analysis using
multi-sensor data correlation by a mobile robot, in: IEEE/SICE Int. Symp. on
System Integration, 2014, pp. 615-620.

on Robot and Human Interactive

C.A. Brooks, K. Iagnemma, Self-supervised terrain classification for planetary
surface exploration rovers, J. Field Robot. 29 (3) (2012) 445-468.

R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller,
Y. LeCun, Learning long-range vision for autonomous off-road driving, J. Field
Robot. 26 (2) (2009) 120-144.

M. Nava, A. Paolillo, J. Guzzi, L.M. Gambardella, A. Giusti, Uncertainty-aware
self-supervised learning of spatial perception tasks, IEEE Robot. Autom. Lett. 6
(4) (2021) 6693-6700.

J. Urakami, K. Seaborn, Nonverbal cues in human-robot interaction: A com-
munication studies perspective, ACM Trans. Hum.-Robot Interact. 12 (2) (2023)
1-21.

N. Gasteiger, M. Hellou, H.S. Ahn, Factors for personalization and localization to
optimize human-robot interaction: A literature review, Int. J. Soc. Robot. (2021)
1-13.

S. Saunderson, G. Nejat, How robots influence humans: A survey of nonverbal
communication in social human-robot interaction, Int. J. Soc. Robot. 11 (2019)
575-608.

J. Rios-Martinez, A. Spalanzani, C. Laugier, From proxemics theory to
socially-aware navigation: A survey, Int. J. Soc. Robot. 7 (2015) 137-153.

P. Agand, M. Taherahmadi, A. Lim, M. Chen, Human navigational intent
inference with probabilistic and optimal approaches, in: IEEE Int. Conf. on
Robotics and Automation, 2022, pp. 8562-8568.

A. Belardinelli, A.R. Kondapally, D. Ruiken, D. Tanneberg, T. Watabe, Intention
estimation from gaze and motion features for human-robot shared-control object
manipulation, in: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2022,
pp. 9806-9813.

S. Vinanzi, C. Goerick, A. Cangelosi, Mindreading for robots: Predicting intentions
via dynamical clustering of human postures, in: Joint IEEE 9th International
Conference on Development and Learning and Epigenetic Robotics, 2019, pp.
272-277.

A. Zaraki, M. Giuliani, M.B. Dehkordi, D. Mazzei, A. D’ursi, D. De Rossi, An
RGB-D based social behavior interpretation system for a humanoid social robot,
in: RSI/ISM International Conference on Robotics and Mechatronics, 2014, pp.
185-190.


https://doi.org/10.1016/j.robot.2023.104568
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb1
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb2
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb2
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb2
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb2
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb2
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb3
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb4
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb5
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb6
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb7
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb8
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb9
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb10
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb11
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb12
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb13
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb14
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb15
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb16
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb17
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb18
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb19
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb20
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb21
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb22
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb23
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb24
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb25
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb26
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb27
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb28
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb28

G. Abbate et al.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

A. Gaschler, S. Jentzsch, M. Giuliani, K. Huth, J. de Ruiter, A. Knoll, Social
behavior recognition using body posture and head pose for human-robot inter-
action, in: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2012, pp.
2128-2133.

J. Schwarz, C.C. Marais, T. Leyvand, S.E. Hudson, J. Mankoff, Combining
body pose, gaze, and gesture to determine intention to interact in vision-based
interfaces, in: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2014, pp. 3443-3452.

A. Belardinelli, Gaze-based intention estimation: principles, methodologies, and
applications in HRI, 2023, arXiv:2302.04530 [cs].

M. Brenner, H. Brock, A. Stiegler, R. Gomez, Developing an engagement-aware
system for the detection of unfocused interaction, in: Int. Symp. on Robot and
Human Interactive Communication, 2021, pp. 798-805.

D. Vaufreydaz, W. Johal, C. Combe, Starting engagement detection towards a
companion robot using multimodal features, Robot. Auton. Syst. 75 (2016) 4-16.
Y. Kato, T. Kanda, H. Ishiguro, May I help you? - Design of human-like
polite approaching behavior-, in: 10th ACM/IEEE International Conference on
Human-Robot Interaction, 2015, pp. 35-42.

J. Bi, F.-c. Hu, Y.-j. Wang, M.-n. Luo, M. He, A method based on interpretable
machine learning for recognizing the intensity of human engagement intention,
Sci. Rep. 13 (1) (2023) 2537.

L. Jing, Y. Tian, Self-supervised visual feature learning with deep neural
networks: A survey, IEEE Trans. Pattern Anal. Mach. Intell. (2020).

C. Doersch, A. Zisserman, Multi-task self-supervised visual learning, in: IEEE
International Conference on Computer Vision, 2017, pp. 2051-2060.

M. Nava, A. Paolillo, J. Guzzi, L.M. Gambardella, A. Giusti, Learning visual
localization of a quadrotor using its noise as self-supervision, IEEE Robot. Autom.
Lett. 7 (2) (2022) 2218-2225.

Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and new
perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1798-1828.
T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, N. Diaz-Rodriguez,
Continual learning for robotics: Definition, framework, learning strategies,
opportunities and challenges, Inf. Fusion 58 (2020) 52-68.

N. Marquardt, S. Greenberg, Informing the design of proxemic interactions, IEEE
Pervasive Comput. 11 (2) (2012) 14-23.

Microsoft, Azure Kinect sensor SDK system requirements, 2023, https://learn.
microsoft.com/en-us/azure/kinect-dk/system-requirements, Accessed: 2023.

T. Mahajan, G. Singh, G. Bruns, G. Bruns, T. Mahajan, G. Singh, An experimental
assessment of treatments for cyclical data, in: Computer Science Conference for
CSU Undergraduates, Vol. 6, 2021, p. 22.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning
in Python, J. Mach. Learn. Res. 12 (2011) 2825-2830.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch:
An imperative style, high-performance deep learning library, in: H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, R. Garnett (Eds.), Advances
in Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp.
8024-8035.

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735-1780.

DJI, Robomaster EP core, 2023, https://www.dji.com/ch/robomaster-ep-core,
Accessed: 2023.

T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, K. Murase, Develop-
ment of human support robot as the research platform of a domestic mobile
manipulator, ROBOMECH J. 6 (1) (2019) 1-15.

R.W. Bohannon, A. Williams Andrews, Normal walking speed: a descriptive
meta-analysis, Physiotherapy 97 (3) (2011) 182-189, http://dx.doi.org/10.1016/
j-physio.2010.12.004, URL: https://www.sciencedirect.com/science/article/pii/
$0031940611000307.

Robotics and Autonomous Systems 171 (2024) 104568

Gabriele Abbate is a researcher and software engineer at
the Dalle Molle Institute for Artificial Intelligence (IDSIA,
USI-SUPSI) in Lugano since 2019. He received a dou-
ble Master’s degree in Informatics from Universita della
Svizzera Italiana (Switzerland) and Universita degli Studi
di Milano-Bicocca (Italy) in 2018. At IDSIA, he leads tech-
nical development in Al and machine learning for various
projects, including image classification, segmentation, large-
scale 3D urban point clouds, and gesture detection. He’s also
active in human-robot interaction, with a focus on robotics
simulation, virtual reality tools, software integration, and
rehabilitation systems.

Alessandro Giusti is a Professor of Al for Autonomous
Robotics at the Dalle Molle Institute for Artificial Intelli-
gence (IDSIA, USI-SUPSI) in Lugano, Switzerland. He leads
a group of 10 researchers and PhD students working on
Self-Supervised robot learning, real-world Deep Learning
applications, and Human-Robot Interaction. He teaches uni-
versity courses at the Swiss Master of Science in Engineering
(Zurich), USI (Lugano), SUPSI (Lugano), and Politecnico di
Milano on Robotics, Computer Vision, Deep Learning and
Data Science topics.

Viktor Schmuck received his M.Sc. degree in Medialogy
from Aalborg University, Aalborg, Denmark, in 2018. He
spent one year as a Researcher with Aalborg University,
Aalborg, DK. From 2019 to 2023, he has been a Ph.D.
student with the Center for Robotics Research, Department
of Engineering, King’s College London, as a member of the
Social AI & Robotics Laboratory. His research focuses on
human-robot interaction, machine learning within the scope
of human and group behavior understanding, and socially-
aware navigation of robots. He is currently a Postdoctoral
Research Associate at the Social AI & Robotics Labora-
tory at KCL, primarily working on socially-aware robotic
applications focused on Human-Robot Interaction.

Oya Celiktutan is an Associate Professor (Senior Lecturer)
in the Center for Robotics Research, Department of Engi-
neering, King’s College London, United Kingdom, where she
is the Head of Social AI & Robotics Laboratory, https://
sairlab.github.io/. Her research focuses on two overarching
questions: how to model human behavior from multimodal
data and how to transfer these models to robots for learn-
ing, action, and interaction. Through an interdisciplinary
lens, she explores the intersection of machine learning and
human-robot interaction.

Antonio Paolillo is a researcher at the Dalle Molle Institute
for Artificial Intelligence (IDSIA, USI-SUPSI) in Lugano. Pre-
viously, he was a post-doc at EPFL, Lausanne, Switzerland
(2019-20); Idiap Research Institute, Martigny, Switzerland
(2018-19); CNRS-University of Montpellier, France (2015-
17). He received his Ph.D. and M.Sc. from Sapienza
University of Rome, Italy, in 2015 and 2011, respec-
tively. He visited the CNRS-AIST Joint Robotics Laboratory,
Tsukuba, Japan (2015); CNRS-University of Montpellier,
France (2014); and Orebro University, Sweden (2010). He
is an Associate Editor for RA-L. His research interests in-
clude robotic control, machine learning and Al for robotics,
human-robot interaction, and rehabilitation robotics.


http://refhub.elsevier.com/S0921-8890(23)00207-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb29
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb30
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb30
http://arxiv.org/abs/2302.04530
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb32
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb33
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb33
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb33
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb34
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb35
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb36
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb37
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb38
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb39
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb40
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb41
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb41
https://learn.microsoft.com/en-us/azure/kinect-dk/system-requirements
https://learn.microsoft.com/en-us/azure/kinect-dk/system-requirements
https://learn.microsoft.com/en-us/azure/kinect-dk/system-requirements
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb43
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb44
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb45
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb46
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb46
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb46
https://www.dji.com/ch/robomaster-ep-core
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb48
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb48
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb48
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb48
http://refhub.elsevier.com/S0921-8890(23)00207-5/sb48
http://dx.doi.org/10.1016/j.physio.2010.12.004
http://dx.doi.org/10.1016/j.physio.2010.12.004
http://dx.doi.org/10.1016/j.physio.2010.12.004
https://www.sciencedirect.com/science/article/pii/S0031940611000307
https://www.sciencedirect.com/science/article/pii/S0031940611000307
https://www.sciencedirect.com/science/article/pii/S0031940611000307
https://sairlab.github.io/
https://sairlab.github.io/

	Self-supervised prediction of the intention to interact with a service robot
	Introduction
	Related work
	Approach
	Problem formulation
	Sensing and features
	Classification approach

	Experimental scenarios
	Real-world interactions at a coffee break area
	Chocolate handover by a waiter robot
	Information service robot

	Results
	Offline experiment in the coffee break scenario
	Sample-level performance
	Sequence-level performance
	Self-supervised learning

	Robot validation experiments
	Self-supervised learning on the waiter robot
	Performance in the information robot scenario

	Discussion

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


